est.tpdm {ExtrPatt} | R Documentation |
Estimation of TPDM
Description
Estimation of tail pairwise dependence matrix (TPDM)
Sub-Routine of est.row.tpdm. Calculates one element of the TPDM
Usage
est.tpdm(X, Y = NULL, anz_cores = 1, clust = NULL, q = 0.98)
est.row.tpdm(x, Y, clust = NULL, q = 0.98)
est.element.tpdm(x, y, clust = NULL, q = 0.98)
Arguments
X |
A t x n dimensional, numeric data-matrix with t: Number of time steps and n: Number of grid points/stations |
Y |
A t x n dimensional, numeric Data-matrix with t: Number of time steps and n: Number of grid points/stations |
anz_cores |
Number of cores for parallel computing (default:1); Be careful not to overload your computer! |
clust |
Optional: If clust = NULL, no declustering is performed. Else, declustering according to cluster-length 'clust'. |
q |
Threshold for computation of TPDM. Only data above the 'q'-quantile will be used for estimation. Choose such that 0<q<1. |
x |
Array of length t, where t is the number of time steps |
y |
Same as x |
Details
Given a random vector X with components x_{t,i}, x_{t,j}
with i,j = 1, \ldots, n
and it's radial component r_{t,ij} = \sqrt{x_{t,i}^2 + x_{t,j}^2}
and angular components w_{t,i} = x_{t,i}/r_{t,ij}
and w_{t,j} = x_{t,j}/r_{t,ij}
, the i'th,j'th element of the TPDM is estimated as:
\hat{\sigma}_{ij} = 2 n_{ij,exc}^{-1} \sum_{t=1}^{n} w_{t,i} w_{t,j} |_{(r_{t,ij} > r_{0,ij})}
.
Given two random vectors X and Y with components x_{t,i}, y_{t,j}
with i,j = 1, \ldots, n
, and it's radial component r_{t,ij} = \sqrt{x_{t,i}^2 + y_{t,j}^2}
and angular components w_{t,i}^x = \frac{x_{t,i}}{r_{t,ij}} ; w_{t,j}^y = \frac{y_{t,j}}{r_{t,ij}}
, the i'th,j'th element of the cross-TPDM is estimated as:
\hat{\sigma}_{ij} = 2 n^{-1}_{exc} \sum_{t=1}^{n} w^x_{t,i} w^y_{t,j} |_{(r_{t,ij} > r_{0,ij})}
.
Value
An n x n matrix, containing the estimate of the TPDM
Array containing the estimate of one row of the TPDM.
Value containing the estimate of one element of the TPDM.
References
Jiang & Cooley (2020) <doi:10.1175/JCLI-D-19-0413.1>; Szemkus & Friederichs (2023)
Examples
data <- precipGER
data.alpha2 <- to.alpha.2(data$pr)
Sigma <- est.tpdm(data.alpha2,anz_cores =1)