HEMM {ExtMallows} | R Documentation |
A hierarchical extended Mallows model for aggregating multiple ranking lists
Description
It uses the hierarchical extended Mallows model to aggregate multiple full/partial ranking lists.
Usage
HEMM(rankings, num.kappa, is.kappa.ranker, initial.method, it.max)
Arguments
rankings |
A n by m matrix, with each column representing a ranking list, which ranks the items from the most preferred to the least preferred. For missing items, use 0 to denote them. |
num.kappa |
the number of over-correlated ranking groups |
is.kappa.ranker |
a list of over-correlated ranking groups, with the k-th element denoting the column numbers of the rankings that belong to the k-th group |
initial.method |
the method for initializing the value of pi0, with four options: mean, median, geometric and random (the mean of three randomly sampled ranking lists). By default, initial.method="mean". |
it.max |
the maximum number of iterations. By default, it.max=20. |
Value
op.phi |
optimal value of phi |
op.phi1 |
optimal value of phi1, the phi value in over-correlated ranking groups |
op.omega |
optimal value of omega |
op.alpha |
optimal value of alpha |
op.pi0 |
optimal value of pi0, ranking the items from the most preferred to the least preferred |
op.kappa |
optimal value of kappa, denoting the items from the most preferred to the least preferred |
max.logL |
maximum value of log-likelihood |
Author(s)
Han Li, Minxuan Xu, Jun S. Liu and Xiaodan Fan
References
An extended Mallows model for ranked data aggregation
Examples
data(simu3)
res=HEMM(rankings = simu3, num.kappa = 2, is.kappa.ranker = list(1:5, 6:10),
initial.method = "mean", it.max = 20)
res$op.phi
res$op.phi1
res$op.omega
res$op.pi0
data(NBArankings)
res=HEMM(rankings = NBArankings, num.kappa = 1, is.kappa.ranker = list(1:6),
initial.method = "mean", it.max = 20)
res$op.omega
res$op.pi0
res$op.kappa