Buffon {ExpRep} | R Documentation |
Buffon
Description
Simulations of the experiment of Buffon.
Usage
Buffon(p = 0.5, width = 0.2, r = c(100, 500, 1000, 1500))
Arguments
p |
Probability of occurrence of some event. |
width |
Width of the band where the probabilities are represented. |
r |
Array of four values, representing the numbers of repetitions of the experiment that will be carried out. |
Value
Four graphics, each one is the simulation of the experiment of Buffon for the number of repetitions contained in the array r.
Note
Department of Mathematics. University of Oriente. Cuba.
Author(s)
Larisa Zamora and Jorge Diaz
References
Gnedenko, B. V. (1978). The Theory of Probability. Mir Publishers. Moscow.
Examples
Buffon(p = 0.5, width = 0.2, r = c(100, 500, 1000, 1500))
## The function is currently defined as
function (p = 0.5, width = 0.2, r = c(100, 500, 1000, 1500))
{
Position <- function(k, colum) {
PE <- k%/%colum
Resto <- k%%colum
if (Resto == 0) {
fila <- PE
columna <- colum
}
else {
fila <- PE + 1
columna <- Resto
}
Position <- list(fila, columna)
return(Position)
}
nf <- layout(matrix(c(1, 2, 3, 4), 2, 2, byrow = TRUE), TRUE)
k <- 0
la <- p - width
lb <- p + width
if (la < 0)
la <- 0
if (lb > 1)
lb <- 1
for (j in 1:4) {
k <- k + 1
Probcara <- array(0, dim = r[j])
for (i in 1:r[j]) {
binomial <- rbinom(i, 1, p)
cara <- length(binomial[binomial == 1])
Probcara[i] <- cara/i
}
P <- Position(k, 2)
fila <- P[[1]]
colum <- P[[2]]
mfg <- c(fila, colum, 2, 2)
a <- as.character(r[j])
plot(Probcara, type = "p", main = paste0("n=", a), xlab = "Repetitions",
ylab = "Probability", font.main = 3, col = "blue",
ylim = c(la, lb))
abline(h = p, col = "red", lty = 1, lwd = 2)
}
}
[Package ExpRep version 1.0 Index]