ccF {ExpDes} | R Documentation |
Multiple comparison: Calinski and Corsten
Description
ccF
Performs the Calinski and Corsten test based on
the F distribution.
Usage
ccF(y, trt, DFerror, SSerror, alpha = 0.05, group = TRUE, main = NULL)
Arguments
y |
Numeric or complex vector containing the response varible. |
trt |
Numeric or complex vector containing the treatments. |
DFerror |
Error degrees of freedom. |
SSerror |
Error sum of squares. |
alpha |
Significance of the test. |
group |
TRUE or FALSE. |
main |
Title. |
Value
Multiple means comparison for the Calinski and Corsten test.
Author(s)
Eric B Ferreira, eric.ferreira@unifal-mg.edu.br
Patricia de Siqueira Ramos
Daniel Furtado Ferreira
References
CALI\'NSKI, T.; CORSTEN, L. C. A. Clustering means in ANOVA by Simultaneous Testing. Biometrics. v. 41, p. 39-48, 1985.
Examples
data(ex2)
attach(ex2)
rbd(trat, provador, aparencia, quali = TRUE, mcomp='ccf',
sigT = 0.05, sigF = 0.05)
[Package ExpDes version 1.2.2 Index]