plot.pgrid {ExceedanceTools} | R Documentation |
Plots pgrid
object.
Description
plot.pgrid
plots a grid of pixels based on a pgrid
object.
Usage
## S3 method for class 'pgrid'
plot(x, set, col = "gray", add = FALSE, type = "confidence", ...)
Arguments
x |
An |
set |
A vector which contains the indices of the pixels/cells that should be plotted. OR a |
col |
The color of the plotted pixels. |
add |
A logical value indicating whether the pixels should be added to an existing plot ( |
type |
The type of set of plot if |
... |
Additional arguments that will be passed to the |
Details
If a vector of pixel indices is supplied to set
, then those pixels will be colored col
by this function and the type
argument has no effect. On the other hand, if the set
argument is of class confreg
, then the function digs in to display either the confidence
or complement
set in the confreg
object. In that case, type
is used to decide which set to display.
Value
This function does not return anything; it only creates a new plot or modifies an existing plot.
Author(s)
Joshua French
Examples
library(SpatialTools)
# Example for exceedance regions
set.seed(10)
# Load data
data(sdata)
# Create prediction grid
pgrid <- create.pgrid(0, 1, 0, 1, nx = 26, ny = 26)
pcoords <- pgrid$pgrid
# Create design matrices
coords = cbind(sdata$x1, sdata$x2)
X <- cbind(1, coords)
Xp <- cbind(1, pcoords)
# Generate covariance matrices V, Vp, Vop using appropriate parameters for
# observed data and responses to be predicted
spcov <- cov.sp(coords = coords, sp.type = "exponential",
sp.par = c(1, 1.5), error.var = 1/3, finescale.var = 0, pcoords = pcoords)
# Predict responses at pgrid locations
krige.obj <- krige.uk(y = as.vector(sdata$y), V = spcov$V, Vp = spcov$Vp,
Vop = spcov$Vop, X = X, Xp = Xp, nsim = 100,
Ve.diag = rep(1/3, length(sdata$y)) , method = "chol")
# Simulate distribution of test statistic for different alternatives
statistic.sim.obj.less <- statistic.sim(krige.obj = krige.obj, level = 5,
alternative = "less")
statistic.sim.obj.greater <- statistic.sim(krige.obj = krige.obj,
level = 5, alternative = "greater")
# Construct null and rejection sets for two scenarios
n90 <- exceedance.ci(statistic.sim.obj.less, conf.level = .90,
type = "null")
r90 <- exceedance.ci(statistic.sim.obj.greater,conf.level = .90,
type = "rejection")
# Plot results
plot(pgrid, n90, col="blue", add = FALSE, xlab = "x", ylab = "y")
plot(pgrid, r90, col="orange", add = TRUE)
legend("bottomleft",
legend = c("contains true exceedance region with 90 percent confidence",
"is contained in true exceedance region with 90 percent confidence"),
col = c("blue", "orange"), lwd = 10)