tsneReductor {Evacluster} | R Documentation |
t-Distributed Stochastic Neighbor Embedding (t-SNE)
Description
This method is an unsupervised, non-linear technique used for data exploration and visualizing high-dimensional data.This function constructs a low-dimensional embedding of high-dimensional data, distances, or similarities.
Usage
tsneReductor(data = NULL, dim = 2, perplexity = 30, max_iter = 500)
Arguments
data |
Data matrix (each row is an observation, each column is a variable) |
dim |
Integer number; Output dimensional (default=2) |
perplexity |
numeric; Perplexity parameter (should not be bigger than 3 * perplexity < nrow(X) - 1, default=30) |
max_iter |
Integer; Number of iterations (default: 500) |
Value
tsneY: A Matrix containing the new representations for the observation with selected dimensions by user
Examples
library("mlbench")
data(Sonar)
rndSamples <- sample(nrow(Sonar),150)
trainData <- Sonar[rndSamples,]
testData <- Sonar[-rndSamples,]
tsne_trainData <- tsneReductor(trainData[,1:60],dim = 3,perplexity = 10,max_iter = 1000)
[Package Evacluster version 0.1.0 Index]