summary.maxlogL {EstimationTools} | R Documentation |
Summarize Maximum Likelihood Estimation
Description
Displays maximum likelihood estimates computed with maxlogL
with
its standard errors, AIC and BIC.
This is a summary
method for maxlogL
object.
Usage
## S3 method for class 'maxlogL'
summary(object, ...)
Arguments
object |
an object of |
... |
additional arguments affecting the summary produced. |
Details
This summary
method computes and displays AIC, BIC,
estimates and standard errors from a estimated model stored i a maxlogL
class object. It also displays and computes Z-score and p values of significance
test of parameters.
Value
A list with information that summarize results of a maxlogL
class object.
Author(s)
Jaime Mosquera GutiƩrrez, jmosquerag@unal.edu.co
See Also
maxlogL
, maxlogLreg
,
bootstrap_maxlogL
Examples
library(EstimationTools)
#--------------------------------------------------------------------------------
### First example: One known parameter
x <- rnorm(n = 10000, mean = 160, sd = 6)
theta_1 <- maxlogL(x = x, dist = 'dnorm', control = list(trace = 1),
link = list(over = "sd", fun = "log_link"),
fixed = list(mean = 160))
summary(theta_1)
#--------------------------------------------------------------------------------
# Second example: Binomial probability parameter estimation with variable
# creation
N <- rbinom(n = 100, size = 10, prob = 0.3)
phat <- maxlogL(x = N, dist = 'dbinom', fixed = list(size = 10),
link = list(over = "prob", fun = "logit_link"))
## Standard error calculation method
print(phat$outputs$StdE_Method)
## 'summary' method
summary(phat)
#--------------------------------------------------------------------------------
# Third example: Binomial probability parameter estimation with no variable
# creation
N <- rbinom(n = 100, size = 10, prob = 0.3)
summary(maxlogL(x = N, dist = 'dbinom', fixed = list(size = 10),
link = list(over = "prob", fun = "logit_link")))
#--------------------------------------------------------------------------------
# Fourth example: Estimation in a regression model with simulated normal data
n <- 1000
x <- runif(n = n, -5, 6)
y <- rnorm(n = n, mean = -2 + 3 * x, sd = exp(1 + 0.3* x))
norm_data <- data.frame(y = y, x = x)
formulas <- list(sd.fo = ~ x, mean.fo = ~ x)
norm_mod <- maxlogLreg(formulas, y_dist = y ~ dnorm, data = norm_data,
link = list(over = "sd", fun = "log_link"))
## 'summary' method
summary(norm_mod)
#--------------------------------------------------------------------------------
[Package EstimationTools version 4.0.0 Index]