predict.maxlogL {EstimationTools} | R Documentation |
Predict Method for maxlogL
Fits
Description
This function computes predictions and optionally the estimated standard errors
of those predictions from a model fitted with maxlogLreg
.
Usage
## S3 method for class 'maxlogL'
predict(
object,
parameter = NULL,
newdata = NULL,
type = c("link", "response", "terms"),
se.fit = FALSE,
terms = NULL,
...
)
Arguments
object |
an object of |
parameter |
a character which specifies the parameter to predict. |
newdata |
a data frame with covariates with which to predict. It is an optional argument, if omitted, the fitted linear predictors or the (distribution) parameter predictions are used. |
type |
a character with the type of prediction required. The default
( |
se.fit |
logical switch indicating if standard errors of predictions are required. |
terms |
A character vector that specifies which terms are required if
|
... |
further arguments passed to or from other methods. |
Details
This predict
method computes predictions for values of any
distribution parameter in link or original scale.
Value
If se.fit = FALSE
, a vector of predictions is returned.
For type = "terms"
, a matrix with a column per term and an attribute "constant"
is returned.
If se.fit = TRUE
, a list with the following components is obtained:
-
fit
: Predictions. -
se.fit
: Estimated standard errors.
Note
Variables are first looked for in newdata
argument and then searched
in the usual way (which will include the environment of the formula used in
the fit). A warning will be given if the variables found are not of the same
length as those in newdata
if it is supplied.
Author(s)
Jaime Mosquera GutiƩrrez, jmosquerag@unal.edu.co
Examples
library(EstimationTools)
#--------------------------------------------------------------------------------
# Example 1: Predictions from a model using a simulated normal distribution
n <- 1000
x <- runif(n = n, -5, 6)
y <- rnorm(n = n, mean = -2 + 3 * x, sd = exp(1 + 0.3* x))
norm_data <- data.frame(y = y, x = x)
# It does not matter the order of distribution parameters
formulas <- list(sd.fo = ~ x, mean.fo = ~ x)
norm_mod <- maxlogLreg(formulas, y_dist = y ~ dnorm, data = norm_data,
link = list(over = "sd", fun = "log_link"))
predict(norm_mod)
#--------------------------------------------------------------------------------
# Example 2: Predictions using new values for covariates
predict(norm_mod, newdata = data.frame(x=0:6))
#--------------------------------------------------------------------------------
# Example 3: Predictions for another parameter
predict(norm_mod, newdata = data.frame(x=0:6), param = "sd",
type = "response")
#--------------------------------------------------------------------------------
# Example 4: Model terms
predict(norm_mod, param = "sd", type = "terms")
#--------------------------------------------------------------------------------