bootstrap_maxlogL {EstimationTools} | R Documentation |
Bootstrap computation of standard error for maxlogL
class objects.
Description
bootstrap_maxlogL
computes standard errors of
maxlogL
class objects by non-parametric bootstrap.
Usage
bootstrap_maxlogL(object, R = 2000, silent = FALSE, ...)
Arguments
object |
an object of |
R |
numeric. It is the number of resamples performed with the dataset in bootstrap computation. Default value is 2000. |
silent |
logical. If TRUE, notifications of |
... |
arguments passed to |
Details
The computation performed by this function may be
invoked when Hessian from optim
and
hessian
fail in maxlogL
or
in maxlogLreg
.
However, this function can be run even if Hessian matrix calculation
does not fails. In this case, standard errors in the maxlogL
class object is replaced.
Value
A modified object of class maxlogL
.
Author(s)
Jaime Mosquera GutiƩrrez, jmosquerag@unal.edu.co
References
Canty A, Ripley BD (2017). boot: Bootstrap R (S-Plus) Functions.
See Also
Examples
library(EstimationTools)
#--------------------------------------------------------------------------------
# First example: Comparison between standard error computation via Hessian matrix
# and standard error computation via bootstrap
N <- rbinom(n = 100, size = 10, prob = 0.3)
phat1 <- maxlogL(x = N, dist = 'dbinom', fixed = list(size = 10),
link = list(over = "prob", fun = "logit_link"))
## Standard error computation method and results
print(phat1$outputs$StdE_Method) # Hessian
summary(phat1)
## 'bootstrap_maxlogL' implementation
phat2 <- phat1 # Copy the first 'maxlogL' object
bootstrap_maxlogL(phat2, R = 100)
## Standard error computation method and results
print(phat2$outputs$StdE_Method) # Bootstrap
summary(phat2)
#--------------------------------------------------------------------------------