| bootstrap_maxlogL {EstimationTools} | R Documentation |
Bootstrap computation of standard error for maxlogL class objects.
Description
bootstrap_maxlogL computes standard errors of
maxlogL class objects by non-parametric bootstrap.
Usage
bootstrap_maxlogL(object, R = 2000, silent = FALSE, ...)
Arguments
object |
an object of |
R |
numeric. It is the number of resamples performed with the dataset in bootstrap computation. Default value is 2000. |
silent |
logical. If TRUE, notifications of |
... |
arguments passed to |
Details
The computation performed by this function may be
invoked when Hessian from optim and
hessian fail in maxlogL or
in maxlogLreg.
However, this function can be run even if Hessian matrix calculation
does not fails. In this case, standard errors in the maxlogL
class object is replaced.
Value
A modified object of class maxlogL.
Author(s)
Jaime Mosquera GutiƩrrez, jmosquerag@unal.edu.co
References
Canty A, Ripley BD (2017). boot: Bootstrap R (S-Plus) Functions.
See Also
Examples
library(EstimationTools)
#--------------------------------------------------------------------------------
# First example: Comparison between standard error computation via Hessian matrix
# and standard error computation via bootstrap
N <- rbinom(n = 100, size = 10, prob = 0.3)
phat1 <- maxlogL(x = N, dist = 'dbinom', fixed = list(size = 10),
link = list(over = "prob", fun = "logit_link"))
## Standard error computation method and results
print(phat1$outputs$StdE_Method) # Hessian
summary(phat1)
## 'bootstrap_maxlogL' implementation
phat2 <- phat1 # Copy the first 'maxlogL' object
bootstrap_maxlogL(phat2, R = 100)
## Standard error computation method and results
print(phat2$outputs$StdE_Method) # Bootstrap
summary(phat2)
#--------------------------------------------------------------------------------