TTT_hazard_shape {EstimationTools} | R Documentation |
Hazard Shape estimation from TTT plot
Description
This function can be used so as to estimate hazard shape corresponding
to a given data set. This is a wrapper for
TTTE_Analytical
.
Usage
TTT_hazard_shape(object, ...)
## S3 method for class 'formula'
TTT_hazard_shape(
formula,
data = NULL,
local_reg = loess.options(),
interpolation = interp.options(),
silent = FALSE,
...
)
## S3 method for class 'EmpiricalTTT'
TTT_hazard_shape(
object,
local_reg = loess.options(),
interpolation = interp.options(),
silent = FALSE,
...
)
Arguments
object |
An alternative way for getting the hazard shape
estimation in passing directly the |
... |
further arguments passed to
|
formula |
An object of class |
data |
an optional data frame containing the response variables. If
data is not specified, the variables are taken from the
environment from which |
local_reg |
a list of control parameters for LOESS. See
|
interpolation |
a list of control parameters for interpolation function. See
|
silent |
logical. If TRUE, warnings of |
Details
This function performs a non-parametric estimation of the empirical total time on test (TTT) plot. Then, this estimated curve can be used so as to get suggestions about initial values and the search region for parameters based on hazard shape associated to the shape of empirical TTT plot.
Use Hazard_Shape
function to get the results for shape estimation.
Author(s)
Jaime Mosquera GutiƩrrez jmosquerag@unal.edu.co
See Also
print.HazardShape
, plot.HazardShape
,
TTTE_Analytical
Examples
#--------------------------------------------------------------------------------
# Example 1: Increasing hazard and its corresponding TTT statistic with
# simulated data
hweibull <- function(x, shape, scale){
dweibull(x, shape, scale)/pweibull(x, shape, scale, lower.tail = FALSE)
}
curve(hweibull(x, shape = 2.5, scale = pi), from = 0, to = 42,
col = "red", ylab = "Hazard function", las = 1, lwd = 2)
y <- rweibull(n = 50, shape = 2.5, scale = pi)
status <- c(rep(1, 48), rep(0, 2))
my_initial_guess1 <- TTT_hazard_shape(Surv(y, status) ~ 1)
my_initial_guess1$hazard_type
#--------------------------------------------------------------------------------
# Example 2: Same example using an 'EmpiricalTTT' object
y <- rweibull(n = 50, shape = 2.5, scale = pi)
TTT_wei <- TTTE_Analytical(y ~ 1)
my_initial_guess2 <- TTT_hazard_shape(TTT_wei)
my_initial_guess2$hazard_type
#--------------------------------------------------------------------------------
# Example 3: Increasing hazard with simulated censored data
hweibull <- function(x, shape, scale){
dweibull(x, shape, scale)/pweibull(x, shape, scale, lower.tail = FALSE)
}
curve(hweibull(x, shape = 2.5, scale = pi), from = 0, to = 42,
col = "red", ylab = "Hazard function", las = 1, lwd = 2)
y <- rweibull(n = 50, shape = 2.5, scale = pi)
y <- sort(y)
status <- c(rep(1, 45), rep(0, 5))
my_initial_guess1 <- TTT_hazard_shape(Surv(y, status) ~ 1)
my_initial_guess1$hazard_type
#--------------------------------------------------------------------------------