TTTE_Analytical {EstimationTools} | R Documentation |
Empirical Total Time on Test (TTT), analytic version.
Description
This function allows to compute the TTT curve from a formula containing a factor type variable (classification variable).
Usage
TTTE_Analytical(
formula,
response = NULL,
scaled = TRUE,
data = NULL,
method = c("Barlow", "censored"),
partition_method = NULL,
silent = FALSE,
...
)
Arguments
formula |
an object of class |
response |
an optional numeric vector with data of the response variable.
Using this argument is equivalent to define a formula with the
right side such as |
scaled |
logical. If |
data |
an optional data frame containing the variables (response and the
factor, if it is desired). If data is not specified, the variables
are taken from the environment from which |
method |
a character specifying the method of computation. There are two
options available: |
partition_method |
a list specifying cluster formation when the covariate in
|
silent |
logical. If TRUE, warnings of |
... |
further arguments passing to |
Details
When method
argument is set as 'Barlow'
, this function
uses the original expression of empirical TTT presented by
Barlow (1979) and used by
Aarset (1987):
where is the
order statistic, with
, and
is the sample size. On the other hand, the option
'censored' is an implementation based on integrals presented in
Westberg and Klefsjö (1994), and using
survfit
to compute the Kaplan-Meier estimator:
Value
A list with class object Empirical.TTT
containing a list with the
following information:
i/n` |
A matrix containing the empirical quantiles. This matrix has the number of columns equals to the number of levels of the factor considered (number of strata). |
phi_n |
A matrix containing the values of empirical TTT. his matrix has the number of columns equals to the number of levels of the factor considered (number of strata). |
strata |
A numeric named vector storing the number of observations per strata, and the name of each strata (names of the levels of the factor). |
Author(s)
Jaime Mosquera Gutiérrez, jmosquerag@unal.edu.co
References
Barlow RE (1979). “Geometry of the total time on test transform.” Naval Research Logistics Quarterly, 26(3), 393–402. ISSN 00281441, doi:10.1002/nav.3800260303.
Aarset MV (1987). “How to Identify a Bathtub Hazard Rate.” IEEE Transactions on Reliability, R-36(1), 106–108. ISSN 15581721, doi:10.1109/TR.1987.5222310.
Klefsjö B (1991). “TTT-plotting - a tool for both theoretical and practical problems.” Journal of Statistical Planning and Inference, 29(1-2), 99–110. ISSN 03783758, doi:10.1016/0378-3758(92)90125-C, https://linkinghub.elsevier.com/retrieve/pii/037837589290125C.
Westberg U, Klefsjö B (1994). “TTT-plotting for censored data based on the piecewise exponential estimator.” International Journal of Reliability, Quality and Safety Engineering, 01(01), 1–13. ISSN 0218-5393, doi:10.1142/S0218539394000027, https://www.worldscientific.com/doi/abs/10.1142/S0218539394000027.
See Also
Examples
library(EstimationTools)
#--------------------------------------------------------------------------------
# Example 1: Scaled empirical TTT from 'mgus1' data from 'survival' package.
TTT_1 <- TTTE_Analytical(Surv(stop, event == 'pcm') ~1, method = 'cens',
data = mgus1, subset=(start == 0))
head(TTT_1$`i/n`)
head(TTT_1$phi_n)
print(TTT_1$strata)
#--------------------------------------------------------------------------------
# Example 2: Scaled empirical TTT using a factor variable with 'aml' data
# from 'survival' package.
TTT_2 <- TTTE_Analytical(Surv(time, status) ~ x, method = "cens", data = aml)
head(TTT_2$`i/n`)
head(TTT_2$phi_n)
print(TTT_2$strata)
#--------------------------------------------------------------------------------
# Example 3: Non-scaled empirical TTT without a factor (arbitrarily simulated
# data).
set.seed(911211)
y <- rweibull(n=20, shape=1, scale=pi)
TTT_3 <- TTTE_Analytical(y ~ 1, scaled = FALSE)
head(TTT_3$`i/n`)
head(TTT_3$phi_n)
print(TTT_3$strata)
#--------------------------------------------------------------------------------
# Example 4: non-scaled empirical TTT without a factor (arbitrarily simulated
# data) using the 'response' argument (this is equivalent to Third example).
set.seed(911211)
y <- rweibull(n=20, shape=1, scale=pi)
TTT_4 <- TTTE_Analytical(response = y, scaled = FALSE)
head(TTT_4$`i/n`)
head(TTT_4$phi_n)
print(TTT_4$strata)
#--------------------------------------------------------------------------------
# Eample 5: empirical TTT with a continuously variant term for the shape
# parameter in Weibull distribution.
x <- runif(50, 0, 10)
shape <- 0.1 + 0.1*x
y <- rweibull(n = 50, shape = shape, scale = pi)
partitions <- list(method='quantile-based',
folds=5)
TTT_5 <- TTTE_Analytical(y ~ x, partition_method = partitions)
head(TTT_5$`i/n`)
head(TTT_5$phi_n)
print(TTT_5$strata)
plot(TTT_5) # Observe changes in Empirical TTT
#--------------------------------------------------------------------------------