test_nonpar {EquiSurv} | R Documentation |
Non-inferiority and equivalence test for the difference of two Kaplan-Meier curves
Description
Function for fitting and testing two Kaplan Meier curves S_1
, S_2
at t_0
concerning the
hypotheses of non-inferiority
H_0:S_1(t_0)-S_2(t_0)\geq \epsilon\ vs.\ H_1: S_1(t_0)-S_2(t_0)< \epsilon
or equivalence
H_0:|S_1(t_0)-S_2(t_0)|\geq \epsilon\ vs.\ H_1: |S_1(t_0)-S_2(t_0)|< \epsilon.
Usage
test_nonpar(epsilon, alpha, t0, type, data_r, data_t, plot = TRUE)
Arguments
epsilon |
non-inferiority/equivalence margin |
alpha |
significance level |
t0 |
time point of interest |
type |
type of the test. "ni" for non-inferiority, "eq" for equivalence test |
data_r , data_t |
datasets containing time and status for each individual |
plot |
if TRUE, a plot of the two Kaplan Meier curves will be given |
Value
A list containing the difference S_1(t_0)-S_2(t_0)
, the lower and upper (1-\alpha
)-confidence bounds, the chosen margin and significance level and the test decision. Further a plot of the curves is given.
Examples
data(veteran)
veteran_r <- veteran[veteran$trt==1,]
veteran_t <- veteran[veteran$trt==2,]
alpha<-0.05
t0<-80
epsilon<-0.15
test_nonpar(epsilon=epsilon,alpha=alpha,t0=t0,type="eq",data_r=veteran_r,data_t=veteran_t)
[Package EquiSurv version 0.1.0 Index]