epimcmc {EpiILM} | R Documentation |
Monte Carlo Simulation
Description
Runs an MCMC algorithm for the estimation of specified model parameters
Usage
epimcmc (object, tmin = NULL, tmax,
niter, sus.par.ini, trans.par.ini = NULL, beta.ini = NULL, spark.ini = NULL,
Sformula = NULL, Tformula = NULL,
pro.sus.var, pro.trans.var = NULL, pro.beta.var = NULL, pro.spark.var = NULL,
prior.sus.dist, prior.trans.dist = NULL, prior.beta.dist = NULL,
prior.spark.dist = NULL, prior.sus.par, prior.trans.par, prior.beta.par = NULL,
prior.spark.par = NULL, adapt = FALSE, acc.rate = NULL)
Arguments
object |
An object of class |
tmin |
The first time point at which the infection occurs, default value is one. |
tmax |
The last time point at which data is observed. |
niter |
Number of MCMC iterations. |
sus.par.ini |
Initial value(s) of the susceptibility parameter(s) (>0). |
trans.par.ini |
Initial value(s) of the transmissibility parameter(s) (>0). |
beta.ini |
Initial value(s) of the spatial parameter(s) (>0) or the network parameter(s) (>0) if contact network is used. |
spark.ini |
Initial value of the spark parameter (>=0). |
Sformula |
An object of class formula. See formula Individual-level covariate information associated with susceptibility can be passed through this argument. An expression of the form |
Tformula |
An object of class formula. See formula Individual-level covariate information associated with transmissibility can be passed through this argument. An expression of the form |
pro.sus.var |
Proposal density variance(s) for susceptibility parameter(s). If a zero value is assigned to the proposal variance of any parameter, the parameter is considered fixed to its |
pro.trans.var |
Proposal density variance(s) for transmissibility parameter(s). If a zero value is assigned to the proposal variance of any parameter, the parameter is considered fixed to its |
pro.beta.var |
Proposal density variance(s) for beta parameter(s). If a zero value is assigned to the proposal variance of any parameter, the parameter is considered fixed to its |
pro.spark.var |
Proposal density variance for the spark parameter. |
prior.sus.dist |
Select the prior distribution(s) for the susceptibility parameter(s) with the choice of "halfnormal" for positive half normal distribution, "gamma" for gamma distribution and "uniform" for uniform distribution |
prior.trans.dist |
Select the prior distribution(s) for the transmissibility parameter(s) with the choice of "halfnormal" for positive half normal distribution, "gamma" for gamma distribution and "uniform" for uniform distribution |
prior.beta.dist |
Select the prior distribution(s) for the beta parameter(s) with the choice of "halfnormal" for half normal distribution, "gamma" for gamma distribution and "uniform" for uniform distribution |
prior.spark.dist |
Select the prior distribution for the spark parameter with the choice of "halfnormal" for half normal distribution, "gamma" for gamma distribution and "uniform" for uniform distribution |
prior.sus.par |
A vector (matrix) of the prior distribution parameters for updating the susceptibility parameter(s). |
prior.trans.par |
A vector (matrix) of the prior distribution parameters for updating the transmissibility parameter(s). |
prior.beta.par |
A vector (matrix) of the prior distribution parameters for updating the kernel parameter(s). |
prior.spark.par |
A vector of the prior distribution parameters for updating the spark parameter. |
adapt |
To enable the adaptive MCMC method in the |
acc.rate |
To set an acceptance rate. This option will be ignored if |
Details
Independent Gaussian random walks are used as the Metropolis-Hastings MCMC proposal for all parameters. The epimcmc
function depends on the MCMC
function from the adaptMCMC package.
Value
Returns an object of class epimcmc
that contains:
- type:
the compartmental framework model used in the analysis.
- kernel.type:
the used
kernel.type
in the function (distance-based or network-based).- Estimates:
the MCMC output of the updated model parameters.
- Loglikelihood:
the loglikelihood of the updated model parameters.
- Fullsamples:
the MCMC output of all the model parameters (including fixed parameters).
- n.sus.par:
the number of parameters in the susceptibility function.
- n.trans.par:
the number of parameters in the transmissibility function.
- n.ker.par:
the number of parameters in the kernel function.
References
Rob Deardon, Xuan Fang, and Grace P. S. Kwong (2015). Statistical modelling of spatio-temporal infectious disease tranmission in Analyzing and Modeling Spatial and Temporal Dynamics of Infectious Diseases, (Ed: D. Chen, B. Moulin, J. Wu), John Wiley & Sons.. Chapter 11.
See Also
summary.epimcmc
, plot.epimcmc
, epidata
, epilike
, pred.epi
.
Examples
## Example 1: spatial SI model
# generate 100 individuals
x <- runif(100, 0, 10)
y <- runif(100, 0, 10)
covariate <- runif(100, 0, 2)
out1 <- epidata(type = "SI", n = 100, Sformula = ~covariate, tmax = 15,
sus.par = c(0.1, 0.3), beta = 5.0, x = x, y = y)
alphapar1 <- matrix(c(1, 1, 1, 1), ncol = 2, nrow = 2)
betapar1 <- c(10, 2)
epi <- epimcmc(object = out1, tmin = 1, tmax = 15,
niter = 1000, sus.par.ini = c(1, 1), beta.ini = 1,
Sformula = ~covariate, pro.sus.var = c(0.5, 0.3), pro.beta.var = 0.1,
prior.sus.dist = c("gamma", "gamma"), prior.beta.dist = "gamma",
prior.sus.par = alphapar1, prior.beta.par = betapar1,
adapt = TRUE, acc.rate = 0.5)
epi
## Example 2: spatial SIR model
lambda <- rep(3, 100)
out2 <- epidata(type = "SIR", n = 100, tmax = 15, sus.par = 0.3, beta = 5.0, infperiod = lambda,
x = x, y = y)
alphapar2 <- c(1, 1)
betapar2 <- c(1, 1)
epi2 <- epimcmc(object = out2, tmin = 1, tmax = 15,
niter = 1000, sus.par.ini = 1, beta.ini = 1,
Sformula = NULL, pro.sus.var = 0.3, pro.beta.var = 0.1,
prior.sus.dist = "gamma", prior.beta.dist = "gamma",
prior.sus.par = alphapar2, prior.beta.par = betapar2,
adapt = FALSE, acc.rate = NULL)
epi2