check_cdt_samples_convergence {EpiEstim} | R Documentation |
Checking convergence of an MCMC chain by using the Gelman-Rubin algorithm
Description
check_cdt_samples_convergence
Checking convergence of an MCMC chain by
using the Gelman-Rubin algorithm
Usage
check_cdt_samples_convergence(cdt_samples)
Arguments
cdt_samples |
the |
Details
This function splits an MCMC chain in two halves and uses the Gelman-Rubin algorithm to assess convergence of the chain by comparing its two halves.
Value
TRUE if the Gelman Rubin test for convergence was successful, FALSE otherwise
Author(s)
Anne Cori
See Also
Examples
## Not run:
## Note the following examples use an MCMC routine
## to estimate the serial interval distribution from data,
## so they may take a few minutes to run
## load data on rotavirus
data("MockRotavirus")
## estimate the serial interval from data
SI_fit <- coarseDataTools::dic.fit.mcmc(dat = MockRotavirus$si_data,
dist="G",
init_pars=init_mcmc_params(MockRotavirus$si_data, "G"),
burnin = 1000,
n.samples = 5000)
## use check_cdt_samples_convergence to check convergence
converg_diag <- check_cdt_samples_convergence(SI_fit@samples)
converg_diag
## End(Not run)
[Package EpiEstim version 2.2-4 Index]