make.configs {EnsembleBase} | R Documentation |
Helper Functions for Manipulating Base Learner Configurations
Description
Helper Functions for Manipulating Base Learner Configurations
Usage
make.configs(baselearner=c("nnet","rf","svm","gbm","knn","penreg")
, config.df, type = "regression")
make.configs.knn.regression(df=expand.grid(
kernel=c("rectangular","epanechnikov","triweight","gaussian")
, k=c(5,10,20,40)))
make.configs.gbm.regression(df=expand.grid(
n.trees=c(1000,2000)
, interaction.depth=c(3,4)
, shrinkage=c(0.001,0.01,0.1,0.5)
, bag.fraction=0.5))
make.configs.svm.regression(df=expand.grid(
cost=c(0.1,0.5,1.0,5.0,10,50,75,100)
, epsilon=c(0.1,0.25)
, kernel="radial"))
make.configs.rf.regression(df=expand.grid(
ntree=c(100,500)
, mtry.mult=c(1,2)
, nodesize=c(2,5,25,100)))
make.configs.nnet.regression(df=expand.grid(
decay=c(1e-4,1e-2,1,100)
, size=c(5,10,20,40)
, maxit=2000))
make.configs.penreg.regression(df = expand.grid(
alpha = 0.0
, lambda = 10^(-8:+7)))
make.configs.bart.regression(df = rbind(cbind(expand.grid(
num_trees = c(50, 100), k = c(2,3,4,5)), q = 0.9, nu = 3)
, cbind(expand.grid(
num_trees = c(50, 100), k = c(2,3,4,5)), q = 0.75, nu = 10)
))
make.instances(baselearner.configs, partitions)
extract.baselearner.name(config, type="regression")
Arguments
baselearner |
Name of base learner algorithm. Currently, seven base learners are included: 1) Neural Network ( |
df , config.df |
Data frame, with columns named after tuning parameters belonging to the base learner, and each row indicating a tuning-parameter combination to include in the configuration list. |
type |
Type of base learner. Currently, only "regression" is supported. |
baselearner.configs |
Base learner configuration list to use in generating instances. |
partitions |
A matrix whose columns define data partitions, usually the output of generate.partitions. |
config |
Base learner configuration object. |
Value
The make.configs
family of functions return a list of objects of various base learner config
classes, such as KNN.Regression.Config
. Function make.instances
returns an object of class Instance.List
. Function extract.baselearner.name
returns a character object representing the name of the base learner associated with the passed-in config object. For example, for a KNN.Regression.Config
object, we get back "KNN". This utility function can be used in printing base learner names based on class of a config object.
Author(s)
Alireza S. Mahani, Mansour T.A. Sharabiani