plumeRise {EmissV} | R Documentation |
Calculate plume rise height.
Description
Calculate the maximum height of rise based on Brigs (1975), the height is calculated using different formulations depending on stability and wind conditions.
Usage
plumeRise(df, imax = 10, ermax = 1/100, Hmax = TRUE, verbose = TRUE)
Arguments
df |
data.frame with micrometeorological and emission data |
imax |
maximum number of iteractions |
ermax |
maximum error |
Hmax |
use weil limit for plume rise, see details |
verbose |
display additional information |
Format
data.frame with the input, rise (m) and effective higt (m)
Details
The input data.frame must contains the folloging colluns:
- z: height of the emission (m)
- r: source raius (m)
- Ve: emission velocity (m/s)
- Te: emission temperature (K)
- ws: wind speed (m/s)
- Temp: ambient temperature (K)
- h: height of the Atmospheric Boundary Layer-ABL (m)
- L: Monin-Obuhkov Lench (m)
- dtdz: lapse ration of potential temperature, used only for stable ABL (K/m)
- Ustar: atriction velocity, used only for neutral ABL (m/s)
- Wstar: scale of convectie velocity, used only for convective ABL (m/s)
Addcitionaly some combination of ws, Wstar and Ustar can produce inacurate results, Weil (1979) propose a geometric limit of 0.62 * (h - Hs) for the rise value.
Value
a data.frame with effective height of emissions for pointSource function
References
The plume rise formulas are from Brigs (1975):"Brigs, G. A. Plume rise predictions, Lectures on Air Pollution and Environmental Impact Analyses. Amer. Meteor. Soc. p. 59-111, 1975." and Arya 1999: "Arya, S.P., 1999, Air Pollution Meteorology and Dispersion, Oxford University Press, New York, 310 p."
The limits are from Weil (1979): "WEIL, J.C. Assessmet of plume rise and dispersion models using LIDAR data, PPSP-MP-24. Prepared by Environmental Center, Martin Marietta Corporation, for Maryland Department of Natural Resources. 1979."
The example is data from a chimney of the Candiota thermoelectric powerplant from Arabage et al (2006) "Arabage, M. C.; Degrazia, G. A.; Moraes O. L. Simulação euleriana da dispersão local da pluma de poluente atmosférico de Candiota-RS. Revista Brasileira de Meteorologia, v.21, n.2, p. 153-160, 2006."
Examples
candiota <- matrix(c(150,1,20,420,3.11,273.15 + 3.16,200,-34.86,3.11,0.33,
150,1,20,420,3.81,273.15 + 4.69,300,-34.83,3.81,0.40,
150,1,20,420,3.23,273.15 + 5.53,400,-24.43,3.23,0.48,
150,1,20,420,3.47,273.15 + 6.41,500,-15.15,3.48,0.52,
150,1,20,420,3.37,273.15 + 6.35,600, -8.85,3.37,2.30,
150,1,20,420,3.69,273.15 + 5.93,800,-10.08,3.69,2.80,
150,1,20,420,3.59,273.15 + 6.08,800, -7.23,3.49,1.57,
150,1,20,420,4.14,273.15 + 6.53,900,-28.12,4.14,0.97),
ncol = 10, byrow = TRUE)
candiota <- data.frame(candiota)
names(candiota) <- c("z","r","Ve","Te","ws","Temp","h","L","Ustar","Wstar")
row.names(candiota) <- c("08:00","09:00",paste(10:15,":00",sep=""))
candiota <- plumeRise(candiota,Hmax = TRUE)
print(candiota)