styblinski_tang_func {EmiR} | R Documentation |
Styblinski-Tang Function
Description
Implementation of n-dimensional Styblinski-Tang function.
Usage
styblinski_tang_func(x)
Arguments
x |
numeric or complex vector. |
Details
On an n-dimensional domain it is defined by
\[f(\vec{x}) = \frac{1}{2} \sum_{i=1}^{n} \left( x_{i}^4 - 16x_{i}^2 + 5x_{i} \right),\]and is usually evaluated on \(x_{i} \in [ -5, 5 ]\), for all \(i=1,...,n\). The function has one global minimum at \(f(\vec{x}) = -39.16599n\) for \(x_{i}=-2.903534\) for all \(i=1,...,n\).
Value
The value of the function.
References
Styblinski MA, Tang T (1990). “Experiments in nonconvex optimization: Stochastic approximation with function smoothing and simulated annealing.” Neural Networks, 3(4), 467–483. doi:10.1016/0893-6080(90)90029-k.
[Package EmiR version 1.0.4 Index]