miele_cantrell_func {EmiR} | R Documentation |
Miele Cantrell Function
Description
Implementation of 4-dimensional Miele Cantrell Function.
Usage
miele_cantrell_func(x)
Arguments
x |
numeric or complex vector. |
Details
On an 4-dimensional domain it is defined by
\[f(\vec{x}) = \left(e^{-x_{1}} - x_{2} \right)^4 + 100(x_{2} - x_{3})^6 + \left(\tan(x_{3} - x_{4})\right)^4 + x_{1}^8\]and is usually evaluated on \(x_{i} \in [ -2, 2 ]\), for all \(i=1,...,4\). The function has one global minimum at \(f(\vec{x}) = 0\) for \(\vec{x} = [ 0, 1, 1, 1 ]\).
Value
The value of the function.
References
Cragg EE, Levy AV (1969). “Study on a supermemory gradient method for the minimization of functions.” Journal of Optimization Theory and Applications, 4(3), 191–205.
[Package EmiR version 1.0.4 Index]