griewank_func {EmiR}R Documentation

Griewank Function

Description

Implementation of n-dimensional Griewank function.

Usage

griewank_func(x)

Arguments

x

numeric or complex vector.

Details

On an n-dimensional domain it is defined by

\[f(\vec{x}) = 1 + \sum_{i=1}^{n} \frac{x_i^{2}}{4000} - \prod_{i=1}^{n}\cos\left(\frac{x_i}{\sqrt{i}}\right),\]

and is usually evaluated on \(x_{i} \in [ -600, 600 ]\), for all \(i=1,...,n\). The function has global minima at \(f(\vec{x}) = 0\) for \(x_{i}=0\) for all \(i=1,...,n\).

Value

The value of the function.

References

Griewank AO (1981). “Generalized descent for global optimization.” Journal of optimization theory and applications, 34(1), 11–39.


[Package EmiR version 1.0.4 Index]