freudenstein_roth_func {EmiR} | R Documentation |
Freudenstein Roth Function
Description
Implementation of 2-dimensional Freudenstein Roth function.
Usage
freudenstein_roth_func(x)
Arguments
x |
numeric or complex vector. |
Details
On an 2-dimensional domain it is defined by
\[f(\vec{x}) = (x_{1} - 13 + ((5 - x_{2})x_{2} - 2)x_{2})^2 + (x_{1} - 29 + ((x_{2} + 1)x_{2} - 14)x_{2})^2\]and is usually evaluated on \(x_{i} \in [ -10, 10 ]\), for all \(i=1,2\). The function has one global minimum at \(f(\vec{x}) = 0\) for \(\vec{x} = [ 5, 4 ]\).
Value
The value of the function.
References
Rao S (2019). Engineering optimization : theory and practice. John Wiley and Sons, Ltd, Hoboken, NJ, USA. ISBN 978-1-119-45479-3.
[Package EmiR version 1.0.4 Index]