elo.model1 {EloOptimized} | R Documentation |
Optimize k parameter in Elo rating method
Description
Function to optimize k parameter in Elo Rating Method
Usage
elo.model1(par, burn_in=100, init_elo = 1000, IA_data, all_ids, p_function = "sigmoid",
return_likelihood = T)
Arguments
par |
initial value of log(k) |
burn_in |
burn in period for establishing initial elo scores. Defaults to 100 |
init_elo |
Initial Elo score for all individuals. Defaults to 1000 |
IA_data |
Data frame with Date, Winner, and Loser |
all_ids |
list of all IDs in sample |
p_function |
function used to calculate probability of winning. Defaults to sinusoidal
function, but use "pnorm" to use the |
return_likelihood |
Logical; if TRUE, returns log likelihood based on given par, if FALSE returns agonistic interactions table with elo scores based on given value of par |
Examples
#for internal use
[Package EloOptimized version 0.3.2 Index]