| shift.inv.tri {EfficientMaxEigenpair} | R Documentation | 
Shifted inverse iteration algorithm for Tridiagonal matrix
Description
Shifted inverse iteration algorithm algorithm to computing the maximal eigenpair of
tridiagonal matrix Q.
Usage
shift.inv.tri(Q, mu, v0_tilde, zstart, digit.thresh = 6)
Arguments
Q | 
 The input matrix to find the maximal eigenpair.  | 
mu | 
 A vector.  | 
v0_tilde | 
 The unnormalized initial vector   | 
zstart | 
 The initial   | 
digit.thresh | 
 The precise level of output results.  | 
Value
A list of eigenpair object are returned, with components z, v and iter.
z | 
 The approximating sequence of the maximal eigenvalue.  | 
v | 
 The approximating eigenfunction of the corresponding eigenvector.  | 
iter | 
 The number of iterations.  | 
Examples
a = c(1:7)^2
b = c(1:7)^2
c = rep(0, length(a) + 1)
c[length(a) + 1] = 8^2
N = length(a)
Q = tridiag(b, a, -c(b[1] + c[1], a[1:N - 1] + b[2:N] + c[2:N], a[N] + c[N + 1]))
shift.inv.tri(Q, mu=rep(1,dim(Q)[1]), v0_tilde=rep(1,dim(Q)[1]), zstart=6,
 digit.thresh = 6)
[Package EfficientMaxEigenpair version 0.1.4 Index]