shift.inv.tri {EfficientMaxEigenpair} | R Documentation |
Shifted inverse iteration algorithm for Tridiagonal matrix
Description
Shifted inverse iteration algorithm algorithm to computing the maximal eigenpair of
tridiagonal matrix Q
.
Usage
shift.inv.tri(Q, mu, v0_tilde, zstart, digit.thresh = 6)
Arguments
Q |
The input matrix to find the maximal eigenpair. |
mu |
A vector. |
v0_tilde |
The unnormalized initial vector |
zstart |
The initial |
digit.thresh |
The precise level of output results. |
Value
A list of eigenpair object are returned, with components z
, v
and iter
.
z |
The approximating sequence of the maximal eigenvalue. |
v |
The approximating eigenfunction of the corresponding eigenvector. |
iter |
The number of iterations. |
Examples
a = c(1:7)^2
b = c(1:7)^2
c = rep(0, length(a) + 1)
c[length(a) + 1] = 8^2
N = length(a)
Q = tridiag(b, a, -c(b[1] + c[1], a[1:N - 1] + b[2:N] + c[2:N], a[N] + c[N + 1]))
shift.inv.tri(Q, mu=rep(1,dim(Q)[1]), v0_tilde=rep(1,dim(Q)[1]), zstart=6,
digit.thresh = 6)
[Package EfficientMaxEigenpair version 0.1.4 Index]