eff.ini.maxeig.shift.inv.tri {EfficientMaxEigenpair} | R Documentation |
Tridiagonal matrix maximal eigenpair
Description
Calculate the maximal eigenpair for the tridiagonal matrix by shifted inverse iteration algorithm.
Usage
eff.ini.maxeig.shift.inv.tri(a, b, c, xi = 1, digit.thresh = 6)
Arguments
a |
The lower diagonal vector. |
b |
The upper diagonal vector. |
c |
The shifted main diagonal vector. The corresponding unshift diagonal vector is -c(b[1] + c[1], a[1:N - 1] + b[2:N] + c[2:N], a[N] + c[N + 1]) where N+1 is the dimension of matrix. |
xi |
The coefficient used to form the convex combination of |
digit.thresh |
The precise level of output results. |
Value
A list of eigenpair object are returned, with components z
, v
and iter
.
z |
The approximating sequence of the maximal eigenvalue. |
v |
The approximating eigenfunction of the corresponding eigenvector. |
iter |
The number of iterations. |
See Also
eff.ini.maxeig.tri
for the tridiagonal matrix maximal
eigenpair by rayleigh quotient iteration algorithm.
eff.ini.maxeig.general
for the general matrix maximal eigenpair.
Examples
a = c(1:7)^2
b = c(1:7)^2
c = rep(0, length(a) + 1)
c[length(a) + 1] = 8^2
eff.ini.maxeig.shift.inv.tri(a, b, c, xi = 1)