plot.Predict.Treat.ContCont {EffectTreat} | R Documentation |
Plots the distribution of the individual causal effect based on S
.
Description
Plots the distribution of \Delta T_j
|S_j
and the 1-\alpha
% CIs for the mean and median \rho_{T0T1}
values (and optionally, for other user-requested \rho_{T0T1}
values).
Usage
## S3 method for class 'Predict.Treat.ContCont'
plot(x, Xlab, Main, Mean.T0T1=FALSE, Median.T0T1=TRUE,
Specific.T0T1="none", alpha=0.05, Cex.Legend=1, ...)
## S3 method for class 'Predict.Treat.Multivar.ContCont'
plot(x, Xlab, Main, Mean.T0T1=FALSE, Median.T0T1=TRUE,
Specific.T0T1="none", alpha=0.05, Cex.Legend=1, ...)
Arguments
x |
An object of class |
Xlab |
The legend of the X-axis of the plot. Default " |
Main |
The title of the PCA plot. Default " ". |
Mean.T0T1 |
Logical. When |
Median.T0T1 |
Logical. When |
Specific.T0T1 |
Optional. A scalar that specifies a particular value |
alpha |
The |
Cex.Legend |
The size of the legend of the plot. Default |
... |
Other arguments to be passed to the |
Author(s)
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs
References
Alonso, A., Van der Elst, W., & Molenberghs, G. (submitted). Validating predictors of therapeutic success: a causal inference approach.
See Also
Examples
# Generate the vector of PCA.ContCont values when rho_T0S=.3, rho_T1S=.9,
# sigma_T0T0=2, sigma_T1T1=2,sigma_SS=2, and the grid of values {-1, -.99,
# ..., 1} is considered for the correlations between T0 and T1:
PCA <- PCA.ContCont(T0S=.3, T1S=.9, T0T0=2, T1T1=2, SS=2,
T0T1=seq(-1, 1, by=.01))
# Obtain the predicted value T for a patient who scores S = 10, using beta=5,
# SS=2, mu_S=4
Predict <- Predict.Treat.ContCont(x=PCA, S=10, Beta=5, SS=2, mu_S=4)
# examine the results
summary(Predict)
# plot Delta_T_j given S_T and 95% CI based on
# the mean value of the valid rho_T0T1 results
plot(Predict, Mean.T0T1=TRUE, Median.T0T1=FALSE,
xlim=c(4, 13))
# plot Delta_T_j given S_T and 99% CI using
# rho_T0T1=.8
plot(Predict, Mean.T0T1=FALSE, Median.T0T1=FALSE,
Specific.T0T1=.6, alpha=0.01, xlim=c(4, 13))