Predict.Treat.Multivar.ContCont {EffectTreat} | R Documentation |
Compute the predicted treatment effect on the true endpoint of a patient based on his or her observed vector of pretreatment predictor values in the continuous-continuous setting
Description
This function computes the predicted \Delta T_j
of a patient based on the vector of pretreatment values \bold{S}_j
of a patient in the continuous-continuous setting.
Usage
Predict.Treat.Multivar.ContCont(Sigma_TT, Sigma_TS, Sigma_SS, Beta,
S, mu_S, T0T1=seq(-1, 1, by=.01))
Arguments
Sigma_TT |
The variance-covariance matrix
|
Sigma_TS |
The matrix that contains the covariances |
Sigma_SS |
The variance-covariance matrix of the pretreatment predictors. For example, when there are |
Beta |
The estimated treatment effect on the true endpoint (in the validation sample). |
S |
The vector of observed pretreatment values |
mu_S |
The vector of estimated means of the pretreatment predictor (in the validation sample). |
T0T1 |
A scalar or vector that contains the correlation(s) between the counterfactuals |
Value
An object of class PCA.Predict.Treat.Multivar.ContCont
with components,
Pred_T |
The predicted |
Var_Delta.T_S |
The variance |
T0T1 |
The correlation between the counterfactuals |
Author(s)
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs
References
Alonso, A., & Van der Elst, W. (submitted). Evaluating multivariate predictors of therapeutic success: a causal inference approach.
See Also
PCA.ContCont, Multivar.PCA.ContCont
Examples
# Specify the covariance matrices to be used
Sigma_TT = matrix(c(177.870, NA, NA, 162.374), byrow=TRUE, nrow=2)
Sigma_TS = matrix(data = c(-45.140, -109.599, 11.290, -56.542,
-106.897, 20.490), byrow = TRUE, nrow = 2)
Sigma_SS = matrix(data=c(840.564, 73.936, -3.333, 73.936, 357.719,
-30.564, -3.333, -30.564, 95.063), byrow = TRUE, nrow = 3)
# Specify treatment effect (Beta), means of vector S (mu_s), and
# observed pretreatment variable values for patient (S)
Beta <- -0.9581 # treatment effect
mu_S = matrix(c(66.8149, 84.8393, 25.1939), nrow=3) #means S_1--S_3
S = matrix(c(90, 180, 30), nrow=3) # S_1--S_3 values for a patient
# predict Delta_T based on S
Pred_S <- Predict.Treat.Multivar.ContCont(Sigma_TT=Sigma_TT, Sigma_TS=Sigma_TS,
Sigma_SS=Sigma_SS, Beta=Beta, S=S, mu_S=mu_S, T0T1=seq(-1, 1, by=.01))
# Explore results
summary(Pred_S)
plot(Pred_S)