Multivar.PCA.ContCont {EffectTreat} | R Documentation |
Compute the multivariate predictive causal association (PCA) in the Continuous-continuous case
Description
The function Multivar.PCA.ContCont
computes the predictive causal association (PCA) when S
= the vector of pretreatment predictors and T
= the True endpoint. All S
and T
should be continuous normally distributed endpoints. See Details below.
Usage
Multivar.PCA.ContCont(Sigma_TT, Sigma_TS, Sigma_SS, T0T1=seq(-1, 1, by=.01), M=NA)
Arguments
Sigma_TT |
The variance-covariance matrix
|
Sigma_TS |
The matrix that contains the covariances |
Sigma_SS |
The variance-covariance matrix of the pretreatment predictors. For example, when there are |
T0T1 |
A scalar or vector that contains the correlation(s) between the counterfactuals |
M |
If |
Value
An object of class Multivar.PCA.ContCont
with components,
Total.Num.Matrices |
An object of class |
Pos.Def |
A |
PCA |
A scalar or vector that contains the PCA ( |
R2_psi_g |
A |
Author(s)
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs
References
Alonso, A., & Van der Elst, W. (submitted). Evaluating multivariate predictors of therapeutic success: a causal inference approach.
Examples
# First specify the covariance matrices to be used
Sigma_TT = matrix(c(177.870, NA, NA, 162.374), byrow=TRUE, nrow=2)
Sigma_TS = matrix(data = c(-45.140, -109.599, 11.290, -56.542,
-106.897, 20.490), byrow = TRUE, nrow = 2)
Sigma_SS = matrix(data=c(840.564, 73.936, -3.333, 73.936, 357.719,
-30.564, -3.333, -30.564, 95.063), byrow = TRUE, nrow = 3)
# Compute PCA
Results <- Multivar.PCA.ContCont(Sigma_TT = Sigma_TT,
Sigma_TS = Sigma_TS, Sigma_SS = Sigma_SS)
# Evaluate results
summary(Results)
plot(Results)