Min.Max.Multivar.PCA {EffectTreat} | R Documentation |
Minimum and maximum values for the multivariate predictive causal association (PCA) in the continuous-continuous case
Description
The function Min.Max.Multivar.PCA
computes the minimum and maximum values for the multivariate predictive causal association (PCA) in the continuous-continuous case.
Usage
Min.Max.Multivar.PCA(gamma, Sigma_SS, Sigma_T0T0, Sigma_T1T1)
Arguments
gamma |
The vector of regression coefficients for the |
Sigma_SS |
The variance-covariance matrix of the pretreatment predictors. For example, when there are |
Sigma_T0T0 |
The variance of |
Sigma_T1T1 |
The variance of |
Author(s)
Wim Van der Elst & Ariel Alonso
References
Alonso, A., & Van der Elst, W. (submitted). Evaluating multivariate predictors of therapeutic success: a causal inference approach.
Examples
# Specify vector of S by treatment interaction coefficients
gamma <- matrix(data = c(-0.006, -0.002, 0.045), ncol=1)
# Specify variances
Sigma_SS = matrix(data=c(882.352, 49.234, 6.420,
49.234, 411.964, -26.205, 6.420, -26.205, 95.400),
byrow = TRUE, nrow = 3)
Sigma_T0T0 <- 82.274
Sigma_T1T1 <- 96.386
# Compute min and max PCA
Min.Max.Multivar.PCA(gamma=gamma, Sigma_SS=Sigma_SS,
Sigma_T0T0=Sigma_T0T0, Sigma_T1T1=Sigma_T1T1)
[Package EffectTreat version 1.1 Index]