effectstars.vglm {EffectStars2} | R Documentation |
Plot effect stars for vglm objects.
Description
Plots effect stars for vglm
-objects. In particular, the method
works for multinomial logit models created by family multinomial
and for
models with ordinal response like sratio
, cratio
,
cumulative
or acat
.
For more details on plotting effect stars see effectstars
.
Usage
## S3 method for class 'vglm'
effectstars(x, p.values = FALSE, symmetric = TRUE,
plot.parallel = FALSE, ...)
Arguments
x |
A |
p.values |
Should the p-values of the single coefficients be included in the labels? Default
is |
symmetric |
Should the parameters be transformed to parameters with symmetric (sum-to-zero)
side constraints instead of using reference levels. Default is |
plot.parallel |
Should parallel parameters (equal over all response categories) be
represented by effect stars. Default is |
... |
further arguments for generic function |
Author(s)
Gunther Schauberger
gunther.schauberger@tum.de
https://www.sg.tum.de/epidemiologie/team/schauberger/
References
Tutz, G. and Schauberger, G. (2013): Visualization of Categorical Response Models -
from Data Glyphs to Parameter Glyphs, Journal of Computational and Graphical Statistics 22(1), 156–177.
Gerhard Tutz (2012): Regression for Categorical Data, Cambridge University Press
See Also
effectstars
effectstars.DIFlasso
Examples
## Not run:
############################################
### Examples for multinomial logit model
############################################
### German election data
data(election)
library(VGAM)
m_elect <- vglm(Partychoice ~ Gender + West + Age + Union + Highschool + Unemployment
+ Pol.Interest + Democracy + Religion, family = multinomial(), data = election)
effectstars(m_elect)
# include p.values
effectstars(m_elect, p.values = TRUE)
### German election data with category-specific covariates
data(election)
election[,13:16] <- election[,13:16] - election[,12]
election[,18:21] <- election[,18:21] - election[,17]
election[,23:26] <- election[,23:26] - election[,22]
election[,28:31] <- election[,28:31] - election[,27]
election$Social <- election$Social_SPD
election$Immigration <- election$Immigration_SPD
election$Nuclear <- election$Nuclear_SPD
election$Left_Right <- election$Left_Right_SPD
m.all <- vglm(Partychoice ~ Social + Immigration + Nuclear + Left_Right + Age +
Religion + Democracy + Pol.Interest + Unemployment + Highschool + Union + West +
Gender, data = election,
family = multinomial(parallel = TRUE~-1 + Social + Immigration +
Nuclear + Left_Right, refLevel = 1),
xij = list(Social ~ Social_SPD + Social_FDP + Social_Greens + Social_Left,
Immigration ~ Immigration_SPD + Immigration_FDP +
Immigration_Greens + Immigration_Left,
Nuclear ~ Nuclear_SPD + Nuclear_FDP +
Nuclear_Greens + Nuclear_Left,
Left_Right ~ Left_Right_SPD + Left_Right_FDP +
Left_Right_Greens + Left_Right_Left),
form2 = ~Social + Immigration + Nuclear + Left_Right + Age +
Religion + Democracy + Pol.Interest + Unemployment + Highschool + Union + West +
Gender + Social_SPD + Social_FDP + Social_Greens + Social_Left +
Immigration_SPD + Immigration_FDP + Immigration_Greens + Immigration_Left +
Nuclear_SPD + Nuclear_FDP + Nuclear_Greens + Nuclear_Left +
Left_Right_SPD + Left_Right_FDP + Left_Right_Greens + Left_Right_Left
)
effectstars(m.all, symmetric = FALSE, p.values = TRUE)
summary(m.all)
### Chilean plebiscite data
data(plebiscite)
m_chile <- vglm(Vote ~ ., family = multinomial(), data = plebiscite)
effectstars(m_chile)
# choose fixed circle sizes and use reference category instead of symmetric side constraints
effectstars(m_chile, symmetric = FALSE, fixed = TRUE)
############################################
### Examples for ordinal data
############################################
### Munich insolvency data
data(insolvency)
insolvency$Age <- scale(insolvency$Age)
my_formula <- Insolvency ~ Age + Gender
m_acat <- vglm(my_formula, data = insolvency,family = acat())
m_cratio <- vglm(my_formula, data = insolvency,family = cratio())
m_sratio <- vglm(my_formula, data = insolvency,family = sratio())
m_cumulative <- vglm(my_formula, data = insolvency,family = cumulative())
summary(m_acat)
effectstars(m_acat, p.values = TRUE)
summary(m_cratio)
effectstars(m_cratio, p.values = TRUE)
summary(m_sratio)
effectstars(m_sratio, p.values = TRUE)
summary(m_cumulative)
effectstars(m_cumulative, p.values = TRUE)
## End(Not run)