percentile {EdSurvey} | R Documentation |
EdSurvey Percentiles
Description
Calculates the percentiles of a numeric variable in an
edsurvey.data.frame
, a light.edsurvey.data.frame
,
or an edsurvey.data.frame.list
.
Usage
percentile(
variable,
percentiles,
data,
weightVar = NULL,
jrrIMax = 1,
varMethod = c("jackknife", "Taylor"),
alpha = 0.05,
dropOmittedLevels = TRUE,
defaultConditions = TRUE,
recode = NULL,
returnVarEstInputs = FALSE,
returnNumberOfPSU = FALSE,
pctMethod = c("symmetric", "unbiased", "simple"),
confInt = TRUE,
dofMethod = c("JR", "WS"),
omittedLevels = deprecated()
)
Arguments
variable |
the character name of the variable to percentiles computed, typically a subject scale or subscale |
percentiles |
a numeric vector of percentiles in the range of 0 to 100 (inclusive) |
data |
an |
weightVar |
a character indicating the weight variable to use. |
jrrIMax |
a numeric value; when using the jackknife variance estimation method, the default estimation option, |
varMethod |
a character set to |
alpha |
a numeric value between 0 and 1 indicating the confidence level.
An |
dropOmittedLevels |
a logical value. When set to the default value of
|
defaultConditions |
a logical value. When set to the default value
of |
recode |
a list of lists to recode variables. Defaults to
|
returnVarEstInputs |
a logical value set to |
returnNumberOfPSU |
a logical value set to |
pctMethod |
one of “unbiased”, “symmetric”, “simple”; unbiased produces a weighted median unbiased percentile estimate, whereas simple uses a basic formula that matches previously published results. Symmetric uses a more basic formula but requires that the percentile is symetric to multiplying the quantity by negative one. |
confInt |
a Boolean indicating if the confidence interval should be returned |
dofMethod |
passed to |
omittedLevels |
this argument is deprecated. Use |
Details
Percentiles, their standard errors, and confidence intervals are calculated according to the vignette titled Statistical Methods Used in EdSurvey. The standard errors and confidence intervals are based on separate formulas and assumptions.
The Taylor series variance estimation procedure is not relevant to percentiles because percentiles are not continuously differentiable.
Value
The return type depends on whether the class of the data
argument is an
edsurvey.data.frame
or an edsurvey.data.frame.list
.
The data argument is an edsurvey.data.frame
When the data
argument is an edsurvey.data.frame
,
percentile
returns an S3 object of class percentile
.
This is a data.frame
with typical attributes (names
,
row.names
, and class
) and additional attributes as follows:
n0 |
number of rows on |
nUsed |
number of observations with valid data and weights larger than zero |
nPSU |
number of PSUs used in the calculation |
call |
the call used to generate these results |
The columns of the data.frame
are as follows:
percentile |
the percentile of this row |
estimate |
the estimated value of the percentile |
se |
the jackknife standard error of the estimated percentile |
df |
degrees of freedom |
confInt.ci_lower |
the lower bound of the confidence interval |
confInt.ci_upper |
the upper bound of the confidence interval |
nsmall |
the number of units with more extreme results, averaged across plausible values |
When the confInt
argument is set to FALSE
, the confidence
intervals are not returned.
The data argument is an edsurvey.data.frame.list
When the data
argument is an edsurvey.data.frame.list
,
percentile
returns an S3 object of class percentileList
.
This is a data.frame with a call
attribute.
The columns in the data.frame
are identical to those in the previous
section, but there also are columns from the edsurvey.data.frame.list
.
covs |
a column for each column in the |
When returnVarEstInputs
is TRUE
, an attribute
varEstInputs
also is returned that includes the variance estimate
inputs used for calculating covariances with varEstToCov
.
Author(s)
Paul Bailey
References
Hyndman, R. J., & Fan, Y. (1996). Sample quantiles in statistical packages. American Statistician, 50, 361–365.
Examples
## Not run:
# read in the example data (generated, not real student data)
sdf <- readNAEP(path=system.file("extdata/data", "M36NT2PM.dat", package="NAEPprimer"))
# get the median of the composite
percentile(variable="composite", percentiles=50, data=sdf)
# get several percentiles
percentile(variable="composite", percentiles=c(0,1,25,50,75,99,100), data=sdf)
# build an edsurvey.data.frame.list
sdfA <- subset(sdf, scrpsu %in% c(5,45,56))
sdfB <- subset(sdf, scrpsu %in% c(75,76,78))
sdfC <- subset(sdf, scrpsu %in% 100:200)
sdfD <- subset(sdf, scrpsu %in% 201:300)
sdfl <- edsurvey.data.frame.list(datalist=list(sdfA, sdfB, sdfC, sdfD),
labels=c("A locations",
"B locations",
"C locations",
"D locations"))
# this shows how these datasets will be described:
sdfl$covs
percentile(variable="composite", percentiles=50, data=sdfl)
percentile(variable="composite", percentiles=c(25, 50, 75), data=sdfl)
## End(Not run)