modular_complexity_avg {EconGeo} | R Documentation |
Compute a measure of average modular complexity of technologies
Description
This function computes a measure of average modular complexity of technologies (average complexity of patent documents in a given technological class) from technological classes - patents (incidence) matrices
Usage
modular_complexity_avg(mat, sparse = FALSE, list = FALSE)
Arguments
mat |
A bipartite adjacency matrix (can be a sparse matrix) |
sparse |
Logical; is the input matrix a sparse matrix? Defaults to FALSE, but can be set to TRUE if the input matrix is a sparse matrix |
list |
Logical; is the input a list? Defaults to FALSE (input = adjacency matrix), but can be set to TRUE if the input is an edge list |
Value
A data frame with columns "tech" and "avg.mod.comp" representing the technologies and their corresponding average modular complexity values.
Author(s)
Pierre-Alexandre Balland p.balland@uu.nl
References
Fleming, L. and Sorenson, O. (2001) Technology as a complex adaptive system: evidence from patent data, Research Policy 30: 1019-1039
See Also
Examples
## generate a technology - patent matrix
set.seed(31)
mat <- matrix(sample(0:1, 30, replace = TRUE), ncol = 5)
rownames(mat) <- c("T1", "T2", "T3", "T4", "T5", "T6")
colnames(mat) <- c("US1", "US2", "US3", "US4", "US5")
## run the function
modular_complexity_avg(mat)
## generate a technology - patent sparse matrix
library(Matrix)
## run the function
smat <- Matrix(mat, sparse = TRUE)
modular_complexity_avg(smat, sparse = TRUE)
## generate a regular data frame (list)
my_list <- get_list(mat)
## run the function
modular_complexity_avg(my_list, list = TRUE)