compLV {EcoVirtual} | R Documentation |
Lotka-Volterra Competition Model
Description
Simulate the Lotka-Volterra competition model for two populations.
Usage
compLV(n01, n02, tmax, r1, r2, k1, k2, alfa, beta)
Arguments
n01 |
initial population for the superior competitor species. |
n02 |
initial population for the inferior competitor species. |
tmax |
maximum simulation time. |
r1 |
intrinsic growth rate for the superior competitor species. |
r2 |
intrinsic growth rate for the inferior competitor species. |
k1 |
carrying capacity for the superior competitor species. |
k2 |
carrying capacity for the inferior competitor species. |
alfa |
alfa coefficient. |
beta |
beta coefficient |
Details
The Lotka-Volterra competition model follows the equations:
-
SP1:
\frac{dN_1}{dt}=r_1N_1\left(\frac{K_1-N_1-\alpha N_2}{K_1}\right)
SP2:
\frac{dN_2}{dt}=r_2N_2\left(\frac{K_2-N_2-\beta N_1}{K_2}\right)
Value
'compLV' returns a graph of the population size in time, and a graph with the isoclines of the equilibrium for both species. 'compLV' also returns an invisible matrix with the population size of each species in time.
Author(s)
Alexandre Adalardo de Oliveira ecovirtualpackage@gmail.com
References
Gotelli, N.J. 2008. A primer of Ecology. 4th ed. Sinauer Associates, 291pp. Hastings, A. 1980. Disturbance, coexistence, history and competition for space. Theoretical Population Biology, 18:363-373. Stevens, M.H.H. 2009. A primer in ecology with R. New York, Springer.
See Also
Examples
## Not run:
compLV(n01=10, n02=10,r1=0.05, r2=0.03, k1=80, k2=50, alfa=1.2, beta=0.5, tmax=200)
## End(Not run)