tuneII {EWSmethods} | R Documentation |
Information Imbalance Across Alphas
Description
Estimates the information imbalance of two hypothesised linked system measurements using distance ranks.
Usage
tuneII(columns, target, tau, alphas, k = 1, method = "euclidean")
Arguments
columns |
Numeric matrix of hypothesised driving variable measurements. If univariate, call 'embedTS(X)' prior to calling 'II()'. |
target |
Numeric matrix of hypothesised response variable measurements. If univariate, call 'embedTS(Y)' prior to calling 'II()'. |
tau |
Numeric. Time lag of information transfer between X and Y. |
alphas |
Numeric vector. Range of X scaling parameters bewtween '0' & '1' inclusive. If information imbalance is minimised at an 'alpha' > 0, this may be indicative of Granger causality. |
k |
Numeric. Number of nearest neighbours when estimating ranks. |
method |
String. Distance measure to be used - defaults to 'euclidean' but see '?dist' for options. |
Value
A dataframe of alphas and the estimate information imbalance
Source
Del Tatto, V., Bueti, D. & Laio, A. (2024) Robust inference of causality in high-dimensional dynamical processes from the Information Imbalance of distance ranks. PNAS 121 (19) e2317256121.
Examples
#Load the multivariate simulated
#dataset `simTransComms`
data(simTransComms)
#Embed the spp_2 and spp_5 of the third community
embedX <- embed_ts(X = simTransComms$community3[,c("time","spp_2")],
E = 5, tau = 1)
embedY <- embed_ts(X = simTransComms$community3[,c("time","spp_5")],
E = 5, tau = 1)
alphas <- seq(from = 0, to = 1, by = 0.1)
#if parallelisation desired,
#this can be achieved using the
#below code
cl <- parallel::makeCluster(2)
doParallel::registerDoParallel(cl)
#Estimate the forward information imbalance
#between spp_2 and spp_5
egII_for <- tuneII(target = embedX[,-1], columns = embedY[,-1],
tau = 1, alphas = alphas, k = 5)
#Estimate the reverse information imbalance
#between spp_2 and spp_5
egII_rev <- tuneII(target = embedY[,-1], columns = embedX[,-1],
tau = 1, alphas = alphas, k = 5)
parallel::stopCluster(cl)