Vector_Error {EWS} | R Documentation |
Vector of Errors
Description
The function measures the estimation errors from the logistic estimation, and stores them in a vector. This function is used to initialize a shock in impulse response analysis as in Koop, Pesaran and Potter (1996).
Usage
Vector_Error(Dicho_Y, Exp_X, Intercept, Nb_Id, Lag, type_model)
Arguments
Dicho_Y |
Vector of the binary time series. |
Exp_X |
Vector or Matrix of explanatory time series. |
Intercept |
Boolean value: TRUE for an estimation with intercept, and FALSE otherwise. |
Nb_Id |
Number of individuals studied for a panel approach. Nb_Id=1 in the univariate case. |
Lag |
Number of lags used for the estimation. |
type_model |
Model number: 1, 2, 3 or 4. |
Value
A numeric vector containing estimation errors.
Author(s)
Jean-Baptiste Hasse and Quentin Lajaunie
References
Kauppi, Heikki, and Pentti Saikkonen. "Predicting US recessions with dynamic binary response models." The Review of Economics and Statistics 90.4 (2008): 777-791.
Koop, Gary, M. Hashem Pesaran, and Simon M. Potter. "Impulse response analysis in nonlinear multivariate models." Journal of econometrics 74.1 (1996): 119-147.
Lajaunie, Quentin. Generalized Impulse Response Function for Dichotomous Models. No. 2852. Orleans Economics Laboratory/Laboratoire d'Economie d'Orleans (LEO), University of Orleans, 2021.
Examples
# NOT RUN {
# Import data
data("data_USA")
# Data process
Var_Y <- as.vector(data_USA$NBER)
Var_X <- as.vector(data_USA$Spread)
# Estimate the estimation errors
results <- Vector_Error(Dicho_Y = Var_Y, Exp_X = Var_X, Intercept = TRUE,
Nb_Id = 1, Lag = 1, type_model = 4)
# print results
results
#}