rates {ETAS} | R Documentation |
Declustering Probabilities, Background Seismicity Rate and Clustering Coefficient
Description
Functions to estimate the declustering probabilities, background seismicity rate and clustering (triggering) coefficient for a fitted ETAS model.
Usage
probs(fit)
rates(fit, lat.range = NULL, long.range = NULL,
dimyx=NULL, plot.it=TRUE)
Arguments
fit |
A fitted ETAS model. An object of class |
lat.range |
Latitude range of the rectangular grid. A numeric vector of length 2. |
long.range |
Longitude range of the rectangular grid. A numeric vector of length 2. |
dimyx |
Dimensions of the rectangular discretization grid for the geographical study region. A numeric vector of length 2. |
plot.it |
Logical flag indicating whether to plot the rates or return them as pixel images. |
Details
The function probs
returns estimates of the declustering probabilities
p_j = 1 - \frac{\mu(x_j, y_j)}{lambda(t_j, x_j, y_j|H_{t_j})}
where 1-p_j
is the probability that event j
is a background event.
The function rates
returns kernel estimate of the background
seismicity rate \mu(x,y)
and the clustering (triggering)
coefficient
\omega(x,y)=1-\frac{\mu(x,y)}{\Lambda(x,y)}
where \Lambda(x,y)
is the total spatial intensity
function.
The argument dimyx
determines the rectangular discretization
grid dimensions. If it is given, then it must be a numeric vector
of length 2 where the first component dimyx[1]
is the
number of subdivisions in the y-direction (latitude) and the
second component dimyx[2]
is the number of subdivisions
in the x-direction (longitude).
Value
If plot.it=TRUE
, the function produces plots of the
background seismicity and total spatial rate, clustering coefficient
and conditional intensity function at the end of study period.
If plot.it=FALSE
, it returns a list with components
bkgd the estimated background siesmicity rate
total the estimated total spatial rate
clust the estimated clustering coefficient
lamb the estimated conditional intensity function at time
t=t_{\mathrm{start}}
Author(s)
Abdollah Jalilian jalilian@razi.ac.ir
References
Zhuang J, Ogata Y, Vere-Jones D (2002). Stochastic Declustering of Space-Time Earthquake Occurrences. Journal of the American Statistical Association, 97(458), 369–380. doi:10.1198/016214502760046925.
Zhuang J, Ogata Y, Vere-Jones D (2006). Diagnostic Analysis of Space-Time Branching Processes for Earthquakes. In Case Studies in Spatial Point Process Modeling, pp. 275–292. Springer Nature. doi:10.1007/0-387-31144-0_15.
Zhuang J (2011). Next-day Earthquake Forecasts for the Japan Region Generated by the ETAS Model. Earth, Planets and Space, 63(3), 207–216. doi:10.5047/eps.2010.12.010.
See Also
Examples
# preparing the catalog
iran.cat <- catalog(iran.quakes, time.begin="1973/01/01",
study.start="1996/01/01", study.end="2016/01/01",
lat.range=c(25, 42), long.range=c(42, 63), mag.threshold=4.5)
print(iran.cat)
## Not run:
plot(iran.cat)
## End(Not run)
# initial parameters values
param01 <- c(0.46, 0.23, 0.022, 2.8, 1.12, 0.012, 2.4, 0.35)
# fitting the model and
## Not run:
iran.fit <- etas(iran.cat, param0=param01)
## End(Not run)
# estimating the declustering probabilities
## Not run:
pr <- probs(iran.fit)
plot(iran.cat$longlat.coord[,1:2], cex=2 * (1 - pr$prob))
## End(Not run)
# estimating the background seismicity rate and clustering coefficient
## Not run:
rates(iran.fit, dimyx=c(100, 125))
iran.rates <- rates(iran.fit, dimyx=c(200, 250), plot.it=FALSE)
summary(iran.rates$background)
## End(Not run)