mwtie_fr {EQUIVNONINF} | R Documentation |
Analogue of mwtie_xy for settings with grouped data
Description
Implementation of the asymptotically distribution-free test for equivalence of discrete distributions from which grouped data are obtained. Hypothesis formulation is in terms of the Mann-Whitney-Wilcoxon functional generalized to the case that ties between observations from different distributions may occur with positive probability. For details see Wellek S (2010) Testing statistical hypotheses of equivalence and noninferiority. Second edition, p.155.
Usage
mwtie_fr(k,alpha,m,n,eps1_,eps2_,x,y)
Arguments
k |
total number of grouped values which can be distinguished in the pooled sample |
alpha |
significance level |
m |
size of Sample 1 |
n |
size of Sample 2 |
eps1_ |
absolute value of the left-hand limit of the hypothetical equivalence range for
|
eps2_ |
right-hand limit of the hypothetical equivalence range for |
x |
row vector with the |
y |
row vector with the |
Details
Notation: \pi_+
and \pi_0
stands for the functional defined by \pi_+ = P[X>Y]
and
\pi_0 = P[X=Y]
, respectively,
with X\sim F \equiv
cdf of Population 1 being independent of Y\sim G \equiv
cdf of Population 2.
Value
alpha |
significance level |
m |
size of Sample 1 |
n |
size of Sample 2 |
eps1_ |
absolute value of the left-hand limit of the hypothetical equivalence range for
|
eps2_ |
right-hand limit of the hypothetical equivalence range for |
WXY_TIE |
observed value of the |
SIGMAH |
square root of the estimated asymtotic variance of |
CRIT |
upper critical bound to |
REJ |
indicator of a positive [=1] vs negative [=0] rejection decision to be taken with the data under analysis |
Author(s)
Stefan Wellek <stefan.wellek@zi-mannheim.de>
Peter Ziegler <peter.ziegler@zi-mannheim.de>
References
Wellek S, Hampel B: A distribution-free two-sample equivalence test allowing for tied observations. Biometrical Journal 41 (1999), 171-186.
Wellek S: Testing statistical hypotheses of equivalence and noninferiority. Second edition.
Boca Raton: Chapman & Hall/CRC Press, 2010, \S
6.4.
Examples
x <- c(1,1,3,2,2,3,1,1,1,2,1,2,2,2,1,2,1,3,2,1,2,1,1,1,1,1,1,1,1,1,1,1,2,1,3,1,3,2,1,1,
2,1,2,1,1,2,2,1,2,1,1,1,1,1,2,2,1,2,2,1,3,1,2,1,1,2,2,1,2,2,1,1,1,3,2,1,1,1,2,1,
3,3,3,1,2,1,2,2,1,1,1,2,2,1,1,2,1,1,2,3,1,3,2,1,1,1,1,2,2,2,1,1,2,2,3,2,1,2,1,1,
2,2,1,2,2,2,1,1,2,3,2,1,3,2,1,1,1,2,2,2,2,1,2,2,1,1,1,1,2,1,1,1,2,1,2,2,1,2,2,2,
2,1,1,2,1,2,2,1,1,1,1,3,1,1,2,2,1,1,1,2,2,2,1,2,3,2,2,1,2,1,2,1,1,2,1,2,2,1,1,1,
2,2,2,2)
y <- c(2,1,2,2,1,1,2,2,2,1,1,2,1,3,3,1,1,1,1,1,1,2,2,3,1,1,1,3,1,1,1,1,1,1,1,2,2,3,2,1,
2,2,2,1,2,1,1,2,2,1,2,1,1,1,1,2,1,2,1,1,3,1,1,1,2,2,2,1,1,1,1,2,1,2,1,1,2,2,2,2,
2,1,1,1,3,2,2,2,1,2,3,1,2,1,1,1,2,1,3,3,1,2,2,2,2,2,2,1,2,1,1,1,1,2,2,1,1,1,1,2,
1,3,1,1,2,1,2,1,2,2,2,1,2,2,2,1,1,1,2,1,2,1,2,1,1,1,2,1,2,2,1,1,1,1,2,2,3,1,3,1,
1,2,2,2,1,1,1,1,2,1,1,3,2,2,3,1,2,2,1,1,2,1,1,2,1,2,2,1,2,1,2,2,2,1,1,1,1,1,1,1,
1,1,1,2,1,3,2,2,1,1,1,2,2,1,1,2,1,2,1,2,2,2,1,2,3,1,1,2,1,2,2,1,1,1,1,2,2,2,1,1,
3,2,1,2,2,2,1,1,1,2,1,2,2,1,2,1,1,2)
mwtie_fr(3,0.05,204,258,0.10,0.10,x,y)