env.evaluate {ENMTools} | R Documentation |
Calculates evaluation metrics (AUC, etc.) using latin hypercube sampling in environment space
Description
Calculates evaluation metrics (AUC, etc.) using latin hypercube sampling in environment space
Usage
env.evaluate(
species,
model,
env,
bg.source = "background",
n.background = 10000,
test.eval = FALSE,
verbose = FALSE,
...
)
Arguments
species |
An enmtools.species object |
model |
An enmtools.model object or a model that can be projected using the predict() function of dismo |
env |
A SpatRaster of environmental data. |
bg.source |
Determines whether minima and maxima of the environment space should be picked using the environment layers or the background points. |
n.background |
The number of background points to sample from the environment space. |
test.eval |
When set to "true", env.evaluate evaluates the test data stored in the model object instead of the training data. |
verbose |
Controls printing of various messages progress reports. Defaults to FALSE. |
... |
Arguments to be passed to othfer functions |
Value
A dismo evaluate object measuring the performance of model predictions in environment space.
Examples
cyreni <- iberolacerta.clade$species$cyreni
cyreni.glm <- enmtools.glm(cyreni, euro.worldclim, test.prop = 0.2,
f = pres ~ bio1 + bio12, nback = 500)
env.evaluate(cyreni, cyreni.glm, euro.worldclim)