show_pvmm_lback_curve {EMpeaksR} | R Documentation |
Visualization of the result of spect_em_pvmm_lback
Description
Visualization of the result of spect_em_pvmm_lback().
Usage
show_pvmm_lback_curve(spect_em_pvmm_lback_res,
x, y,
mix_ratio_init,
mu_init,
sigma_init,
eta_init,
x_lower,
x_upper)
Arguments
spect_em_pvmm_lback_res |
data set obtained by spect_em_pvmm_lback() |
x |
measurement steps |
y |
intensity |
mu_init |
initial values of the mean of the components |
sigma_init |
initial values of the standard deviation of the components |
eta_init |
initial values of the mixing ratio of Gauss and Lorentz distribution |
mix_ratio_init |
initial values of the mixture ratio of the components |
x_lower |
lower limit of the measurement steps. Default is a minimum of x |
x_upper |
upper limit of the measurement steps. Default is a maximum of x |
Details
Perform a visualization of fitting curve estimated by pseudo-Voigt mixture model with a linear background.
Value
Show the fitting curve and variation of the parameters.
References
Matsumura, T., Nagamura, N., Akaho, S., Nagata, K., & Ando, Y. (2019). Spectrum adapted expectation-maximization algorithm for high-throughput peak shift analysis. Science and technology of advanced materials, 20(1), 733-745.
Matsumura, T., Nagamura, N., Akaho, S., Nagata, K., & Ando, Y. (2021). Spectrum adapted expectation-conditional maximization algorithm for extending high–throughput peak separation method in XPS analysis. Science and Technology of Advanced Materials: Methods, 1(1), 45-55.
Matsumura, T., Nagamura, N., Akaho, S., Nagata, K., & Ando, Y. (2023). High-throughput XPS spectrum modeling with autonomous background subtraction for 3 d 5/2 peak mapping of SnS. Science and Technology of Advanced Materials: Methods, 3(1), 2159753.
Examples
#generating the synthetic spectral data based on three component Pseudo-Voigt mixture model.
x <- seq(0, 100, by = 0.5)
K <- 3
true_mu <- c(35, 50, 65)
true_sigma <- c(3, 3, 3)
true_mix_ratio <- c(0.5/3, 0.5/3, 0.5/3, 0.5)
true_eta <- c(0.4, 0.6, 0.1)
degree <- 4
#Normalized Pseudo-Voigt distribution
truncated_pv <- function(x, mu, sigma, eta) {
(eta*dcauchy(x, mu, sqrt(2*log(2))*sigma) + (1-eta)*dnorm(x, mu, sigma)) /
sum(eta*dcauchy(x, mu, sqrt(2*log(2))*sigma) + (1-eta)*dnorm(x, mu, sigma))
}
y <- c(true_mix_ratio[1]*truncated_pv(x = x,
mu = true_mu[1],
sigma = true_sigma[1],
eta = true_eta[1])*10^degree +
true_mix_ratio[2]*truncated_pv(x = x,
mu = true_mu[2],
sigma = true_sigma[2],
eta = true_eta[2])*10^degree +
true_mix_ratio[3]*truncated_pv(x = x,
mu = true_mu[3],
sigma = true_sigma[3],
eta = true_eta[3])*10^degree +
true_mix_ratio[4]*(c(500*x + 15000) / sum(500*x + 15000))*10^degree)
plot(y~x, main = "genrated synthetic spectral data")
#Peak fitting by EMpeaksR
#Initial values
mu_init <- c(30, 40, 60)
sigma_init <- c(4, 4, 4)
mix_ratio_init <- rep(1/(length(mu_init)+3), length(mu_init)+3)
eta_init <- c(1, 1, 1)
#Coducting calculation
SP_ECM_PV_LBACK_res <- spect_em_pvmm_lback(x = x,
y = y,
mu = mu_init,
sigma = sigma_init,
eta = eta_init,
mix_ratio = mix_ratio_init,
x_lower = min(x),
x_upper = max(x),
conv.cri = 1e-2,
maxit = 2000)
#Plot fitting curve and trace plot of parameters
show_pvmm_lback_curve(spect_em_pvmm_lback_res = SP_ECM_PV_LBACK_res,
x = x,
y = y,
mix_ratio_init = mix_ratio_init,
mu_init = mu_init,
sigma_init = sigma_init,
eta_init = eta_init,
x_lower = min(x),
x_upper = max(x))
#Showing the result of spect_em_pvmm_lback()
print(cbind(SP_ECM_PV_LBACK_res$mu, SP_ECM_PV_LBACK_res$sigma, SP_ECM_PV_LBACK_res$eta,
SP_ECM_PV_LBACK_res$mix_ratio[1:K]))
print(cbind(true_mu, true_sigma, true_eta, true_mix_ratio[1:K]))