show_dsgmm_curve {EMpeaksR} | R Documentation |
Visualization of the result of spect_em_dsgmm
Description
Visualization of the result of spect_em_dsgmm().
Usage
show_dsgmm_curve(spect_em_dsgmm_res,
x,
y,
mix_ratio_init,
mu_init,
sigma_init,
alpha_init,
eta_init)
Arguments
spect_em_dsgmm_res |
data set obtained by spect_em_dsgmm() |
x |
measurement steps |
y |
intensity |
mix_ratio_init |
initial values of the mixture ratio of the components |
mu_init |
initial values of the mean of the components |
sigma_init |
initial values of the standard deviation of the components |
alpha_init |
initial values of the asymmetric parameter of the components |
eta_init |
initial values of the mixing ratio of Gauss and Lorentz distribution |
Details
Perform a visualization of fitting curve estimated by Doniach-Sunjic-Gauss mixture model.
Value
Show the fitting curve and variation of the parameters.
References
Matsumura, T., Nagamura, N., Akaho, S., Nagata, K., & Ando, Y. (2019). Spectrum adapted expectation-maximization algorithm for high-throughput peak shift analysis. Science and technology of advanced materials, 20(1), 733-745.
Matsumura, T., Nagamura, N., Akaho, S., Nagata, K., & Ando, Y. (2021). Spectrum adapted expectation-conditional maximization algorithm for extending high–throughput peak separation method in XPS analysis. Science and Technology of Advanced Materials: Methods, 1(1), 45-55.
Examples
#generating the synthetic spectral data based on three component Doniach-Sunjic-Gauss mixture model.
x <- seq(0, 100, by = 0.5)
true_mu <- c(20, 50, 80)
true_sigma <- c(3, 3, 3)
true_alpha <- c(0.1, 0.3, 0.1)
true_eta <- c(0.4, 0.6, 0.1)
true_mix_ratio <- rep(1/3, 3)
degree <- 4
#trancated Doniach-Sunjic-Gauss
truncated_dsg <- function(x, mu, sigma, alpha, eta) {
((eta*(((gamma(1-alpha)) /
((x-mu)^2+(sqrt(2*log(2))*sigma)^2)^((1-alpha)/2)) *
cos((pi*alpha/2)+(1-alpha)*atan((x-mu) /
(sqrt(2*log(2))*sigma))))) + (1-eta)*dnorm(x, mu, sigma)) /
sum( ((eta*(((gamma(1-alpha)) /
((x-mu)^2+(sqrt(2*log(2))*sigma)^2)^((1-alpha)/2)) *
cos((pi*alpha/2)+(1-alpha)*atan((x-mu) /
(sqrt(2*log(2))*sigma))))) + (1-eta)*dnorm(x, mu, sigma)))
}
y <- c(true_mix_ratio[1]*truncated_dsg(x = x,
mu = true_mu[1],
sigma = true_sigma[1],
alpha = true_alpha[1],
eta = true_eta[1])*10^degree +
true_mix_ratio[2]*truncated_dsg(x = x,
mu = true_mu[2],
sigma = true_sigma[2],
alpha = true_alpha[2],
eta = true_eta[2])*10^degree +
true_mix_ratio[3]*truncated_dsg(x = x,
mu = true_mu[3],
sigma = true_sigma[3],
alpha = true_alpha[3],
eta = true_eta[3])*10^degree)
plot(y~x, main = "genrated synthetic spectral data")
#Peak fitting by EMpeaksR
#Initial values
K <- 3
mix_ratio_init <- c(0.2, 0.4, 0.4)
mu_init <- c(20, 40, 70)
sigma_init <- c(4, 3, 2)
alpha_init <- c(0.3, 0.2, 0.4)
eta_init <- c(0.5, 0.4, 0.3)
#Coducting calculation
SP_ECM_DSG_res <- spect_em_dsgmm(x = x,
y = y,
mu = mu_init,
sigma = sigma_init,
alpha = alpha_init,
eta = eta_init,
mix_ratio = mix_ratio_init,
conv.cri = 1e-2,
maxit = 2000)
#Plot fitting curve and trace plot of parameters
show_dsgmm_curve(SP_ECM_DSG_res,
x,
y,
mix_ratio_init,
mu_init,
sigma_init,
alpha_init,
eta_init)
#Showing the result of spect_em_dsgmm()
print(cbind(c(mu_init),
c(sigma_init),
c(alpha_init),
c(eta_init),
c(mix_ratio_init)))
print(cbind(SP_ECM_DSG_res$mu,
SP_ECM_DSG_res$sigma,
SP_ECM_DSG_res$alpha,
SP_ECM_DSG_res$eta,
SP_ECM_DSG_res$mix_ratio))
print(cbind(true_mu,
true_sigma,
true_alpha,
true_eta,
true_mix_ratio))