get_entropy {EMMIXSSL}R Documentation

Shannon entropy

Description

Shannon entropy

Usage

get_entropy(dat, n, p, g, pi, mu, sigma, ncov = 2)

Arguments

dat

An n\times p matrix where each row represents an individual observation

n

Number of observations.

p

Dimension of observation vecor.

g

Number of multivariate normal classes.

pi

A g-dimensional vector for the initial values of the mixing proportions.

mu

A p \times g matrix for the initial values of the location parameters.

sigma

A p\times p covariance matrix if ncov=1, or a list of g covariance matrices with dimension p\times p \times g if ncov=2.

ncov

Options of structure of sigma matrix; the default value is 2; ncov = 1 for a common covariance matrix; ncov = 2 for the unequal covariance/scale matrices.

Details

The concept of information entropy was introduced by shannon1948mathematical. The entropy of y_j is formally defined as

e_j( y_j; \theta)=-\sum_{i=1}^g \tau_i( y_j; \theta) \log\tau_i(y_j;\theta).

Value

clusprobs

The posterior probabilities of the i-th entity that belongs to the j-th group.

Examples

n<-150
pi<-c(0.25,0.25,0.25,0.25)
sigma<-array(0,dim=c(3,3,4))
sigma[,,1]<-diag(1,3)
sigma[,,2]<-diag(2,3)
sigma[,,3]<-diag(3,3)
sigma[,,4]<-diag(4,3)
mu<-matrix(c(0.2,0.3,0.4,0.2,0.7,0.6,0.1,0.7,1.6,0.2,1.7,0.6),3,4)
dat<-rmix(n=n,pi=pi,mu=mu,sigma=sigma,ncov=2)
en<-get_entropy(dat=dat$Y,n=150,p=3,g=4,mu=mu,sigma=sigma,pi=pi,ncov=2)

[Package EMMIXSSL version 1.1.1 Index]