estimate.logic.lm {EMJMCMC} | R Documentation |
Obtaining Bayesian estimators of interest from an LM model for the logic regression case
Description
Obtaining Bayesian estimators of interest from an LM model for the logic regression case
Usage
estimate.logic.lm(formula, data, n, m, r = 1)
Arguments
formula |
a formula object for the model to be addressed |
data |
a data frame object containing variables and observations corresponding to the formula used |
n |
sample size |
m |
total number of input binary leaves |
r |
omitted |
Value
- mlik
marginal likelihood of the model
- waic
AIC model selection criterion
- dic
BIC model selection criterion
- summary.fixed$mean
a vector of posterior modes of the parameters
See Also
BAS::bayesglm.fit, estimate.logic.glm
Examples
X4 <- as.data.frame(
array(
data = rbinom(n = 50 * 1000, size = 1, prob = runif(n = 50 * 1000, 0, 1)),
dim = c(1000, 50)
)
)
Y4 <- rnorm(
n = 1000,
mean = 1 +
7 * (X4$V4 * X4$V17 * X4$V30 * X4$V10) +
7 * (X4$V50 * X4$V19 * X4$V13 * X4$V11) +
9 * (X4$V37 * X4$V20 * X4$V12) +
7 * (X4$V1 * X4$V27 * X4$V3) +
3.5 * (X4$V9 * X4$V2) +
6.6 * (X4$V21 * X4$V18) +
1.5 * X4$V7 +
1.5 * X4$V8
, sd = 1
)
X4$Y4 <- Y4
formula1 <- as.formula(
paste(colnames(X4)[51], "~ 1 +", paste0(colnames(X4)[-c(51)], collapse = "+"))
)
estimate.logic.lm(formula = formula1, data = X4, n = 1000, m = 50)
[Package EMJMCMC version 1.5.0 Index]