estimate.logic.glm {EMJMCMC} | R Documentation |
Obtaining Bayesian estimators of interest from a GLM model in a logic regression context
Description
Obtaining Bayesian estimators of interest from a GLM model in a logic regression context
Usage
estimate.logic.glm(formula, data, family, n, m, r = 1)
Arguments
formula |
a formula object for the model to be addressed |
data |
a data frame object containing variables and observations corresponding to the formula used |
family |
either poisson() or binomial(), that are currently adopted within this function |
n |
sample size |
m |
total number of input binary leaves |
r |
omitted |
Value
a list of
- mlik
marginal likelihood of the model
- waic
AIC model selection criterion
- dic
BIC model selection criterion
- summary.fixed$mean
a vector of posterior modes of the parameters
See Also
BAS::bayesglm.fit estimate.logic.lm
Examples
X1 <- as.data.frame(
array(data = rbinom(n = 50 * 1000, size = 1, prob = 0.3), dim = c(1000, 50))
)
Y1 <- -0.7 + 1 * ((1 - X1$V1) * (X1$V4)) + 1 * (X1$V8 * X1$V11) + 1 * (X1$V5 * X1$V9)
X1$Y1 <- round(1.0 / (1.0 + exp(-Y1)))
formula1 <- as.formula(
paste(colnames(X1)[51], "~ 1 +", paste0(colnames(X1)[-c(51)], collapse = "+"))
)
estimate.logic.glm(
formula = formula1, data = X1, family = binomial(), n = 1000, m = 50
)
[Package EMJMCMC version 1.5.0 Index]