| Projection On 2D {EMCluster} | R Documentation | 
Produce Projection on 2D
Description
The function projects multivariate data on 2D plane which can be displayed
by plotppcontour() later.
Usage
project.on.2d(x, emobj = NULL, pi = NULL, Mu = NULL,
    LTSigma = NULL, class = NULL, method = c("PP", "SVD"))
Arguments
| x | the data matrix, dimension  | 
| emobj | the desired model which is a list mainly contains  | 
| pi | the mixing proportion, length  | 
| Mu | the centers of clusters, dimension  | 
| LTSigma | the lower triangular matrices of dispersion,
 | 
| class | id of classifications, length  | 
| method | either projection pursuit or singular value decomposition. | 
Details
This function produces projection outputs of x and emobj.
Value
A projection is returned which is a list contains
-  dais an \times 2projected matrix ofx.
-  Piis the original proportionemobj$piof lengthK.
-  Muis aK \times 2projected matrix ofemboj$Mu.
-  Sis a2 \times 2 \times Kprojected array ofemboj$LTSigma.
-  classis the original class idemobj$class.
-  proj.matis the projection matrix of dimensionp \times 2.
Author(s)
Wei-Chen Chen wccsnow@gmail.com and Ranjan Maitra.
References
https://www.stat.iastate.edu/people/ranjan-maitra
See Also
Examples
## Not run: 
library(EMCluster, quietly = TRUE)
set.seed(1234)
### Iris.
x <- as.matrix(iris[, 1:4])
ret <- init.EM(x, nclass = 3, min.n = 30)
ret.proj <- project.on.2d(x, ret)
### Plot.
pdf("iris_ppcontour.pdf", height = 5, width = 5)
plotppcontour(ret.proj$da, ret.proj$Pi, ret.proj$Mu, ret.proj$S,
              ret.proj$class, main = "Iris K = 3")
dev.off()
## End(Not run)