Information Criteria {EMCluster} | R Documentation |
Information Criteria for Model-Based Clustering
Description
These functions are tools for compute information criteria for the fitted models.
Usage
em.ic(x, emobj = NULL, pi = NULL, Mu = NULL, LTSigma = NULL,
llhdval = NULL)
em.aic(x, emobj = NULL, pi = NULL, Mu = NULL, LTSigma = NULL)
em.bic(x, emobj = NULL, pi = NULL, Mu = NULL, LTSigma = NULL)
em.clc(x, emobj = NULL, pi = NULL, Mu = NULL, LTSigma = NULL)
em.icl(x, emobj = NULL, pi = NULL, Mu = NULL, LTSigma = NULL)
em.icl.bic(x, emobj = NULL, pi = NULL, Mu = NULL, LTSigma = NULL)
Arguments
x |
the data matrix, dimension |
emobj |
the desired model which is a list mainly contains |
pi |
the mixing proportion, length |
Mu |
the centers of clusters, dimension |
LTSigma |
the lower triangular matrices of dispersion,
|
llhdval |
the total log likelihood value of |
Details
The em.ic
calls all other functions to compute AIC (em.aic
),
BIC (em.bic
), CLC (em.clc
), ICL (em.icl
), and
ICL.BIC (em.icl.bic
). All are useful information criteria for
model selections, mainly choosing number of cluster.
Value
em.ic
returns a list containing all other information criteria
for given the data x
and the desired model emobj
.
Author(s)
Wei-Chen Chen wccsnow@gmail.com and Ranjan Maitra
References
https://www.stat.iastate.edu/people/ranjan-maitra
See Also
Examples
library(EMCluster, quietly = TRUE)
x2 <- da2$da
emobj <- list(pi = da2$pi, Mu = da2$Mu, LTSigma = da2$LTSigma)
em.ic(x2, emobj = emobj)