| EM Control {EMCluster} | R Documentation |
EM Control Generator and Controller
Description
The .EMControl generates an EM control (.EMC)
controlling the options and conditions of EM algorithms,
i.e. this function generate a default template.
One can either modify .EMC or employ this function to
control EM algorithms.
By default, .EMC, .EMC.Rnd, and .EC.Rndp are
three native controllers as the EMCluster is loaded.
Usage
.EMControl(alpha = 0.99, short.iter = 200, short.eps = 1e-2,
fixed.iter = 1, n.candidate = 3,
em.iter = 1000, em.eps = 1e-6, exhaust.iter = 5)
.EMC
.EMC.Rnd
.EMC.Rndp
Arguments
alpha |
only used in |
short.iter |
number of short-EM steps, default = 200. |
short.eps |
tolerance of short-EM steps, default = 1e-2. |
fixed.iter |
fixed iterations of EM for "RndEM" initialization, default = 1. |
n.candidate |
reserved for other initialization methods (unimplemented). |
em.iter |
maximum number of long-EM steps, default = 1000. |
em.eps |
tolerance of long-EM steps, default = 1e-6. |
exhaust.iter |
number of iterations for "exhaustEM" initialization, default = 5. |
Details
exhaust.iter and fixed.iter are used to control the
iterations of initialization procedures.
short.iter and short.eps are used to control the
short-EM iterations.
em.iter and em.eps are used to control the long-EM iterations.
Moeover, short.eps and em.eps are for checking convergence of
the iterations.
Value
This function returns a list as .EMC by default.
The .EMC.Rnd is equal to .EMControl(short.eps = Inf) and
usually used by the rand.EM method.
The .EMC.Rndp is equal to .EMControl(fixed.iter = 5) where
each random initials run 5 EM iterations in the rand.EM method.
Author(s)
Wei-Chen Chen wccsnow@gmail.com and Ranjan Maitra.
References
https://www.stat.iastate.edu/people/ranjan-maitra
See Also
Examples
library(EMCluster, quietly = TRUE)
.EMC <- .EMControl()
.EMC.Rnd <- .EMControl(short.eps = Inf)
.EMC.Rndp <- .EMControl(fixed.iter = 5)