myLLfun {ELYP} | R Documentation |
Compute Baseline Hazard for the Given Data and Parameters beta1, beta2, lam. Also Compute the empirical likelihood value.
Description
This function is similar to fitYP3
. Just streamline input and output.
Usage
myLLfun(mle, dataMat, fun)
Arguments
mle |
a vector of length 3, containing the parameter values: beta1, beta2 and lam. They do not have to be the MLE. |
dataMat |
a matrix of 4 by n. But the 4th row do not matter, since alpha=0 here always. |
fun |
a function, used in the definition of int f(t)dH(t)= Mulam. |
Details
We assume a Y-P model. and with the given parameters (in the input mle) we compute the baseline hazard and compute the (parameter constrained) empirical likelihood value.
Value
A list with the following components:
Mulam |
The value of int f(t) d H(t) for corresponding lam. Notice lam, beta1, beta2 determine the baseline H(t). |
Loglik |
The log empirical likelihood. |
Author(s)
Mai Zhou
References
Zhou, M. (2002). Computing censored empirical likelihood ratio by EM algorithm. Tech Report, Univ. of Kentucky, Dept of Statistics
Examples
## censored regression with one right censored observation.
## we check the estimation equation, with the MLE inside myfun7.
y <- c(3, 5.3, 6.4, 9.1, 14.1, 15.4, 18.1, 15.3, 14, 5.8, 7.3, 14.4)
x <- c(1, 1.5, 2, 3, 4, 5, 6, 5, 4, 1, 2, 4.5)
d <- c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0)