PROMAX {EFA.dimensions} | R Documentation |
promax rotation
PROMAX(loadings, ppower, verbose)
loadings |
A loading matrix. |
ppower |
The exponent for the promax target matrix. 'ppower' must be 1 or greater. '4' is a conventional value. |
verbose |
Should detailed results be displayed in console? TRUE (default) or FALSE |
This function uses the R built-in promax function and provides additional output.
A list with the following elements:
loadingsNOROT |
The unrotated loadings |
pattern |
The pattern matrix (for promax rotation) |
structure |
The structure matrix (for promax rotation) |
phi |
The correlations between the factors (for promax rotation) |
cormat_reproduced |
The reproduced correlation matrix, based on the rotated loadings |
Brian P. O'Connor
# the Harman (1967) correlation matrix
PCAoutput <- PCA(data_Harman, Nfactors = 2, Ncases=305, rotate='none', verbose=TRUE)
PROMAX(PCAoutput$loadingsNOROT, ppower = 4, verbose=TRUE)
# Rosenberg Self-Esteem scale items
PCAoutput <- PCA(data_RSE, corkind='polychoric', Nfactors = 2, rotate='none', verbose=TRUE)
PROMAX(PCAoutput$loadingsNOROT, ppower = 4, verbose=TRUE)
# NEO-PI-R scales
PCAoutput <- PCA(data_NEOPIR, corkind='pearson', Nfactors = 5, rotate='none', verbose=TRUE)
PROMAX(PCAoutput$loadingsNOROT, ppower = 4, verbose=TRUE)