computeApproxNormSquaredEigenvector {EESPCA} | R Documentation |
Approximates the normed squared eigenvector loadings
Description
Approximates the normed squared eigenvector loadings using a simplified version of the formula associating normed squared eigenvector loadings with the eigenvalues of the full matrix and sub-matrices.
Usage
computeApproxNormSquaredEigenvector(cov.X, v1, lambda1, max.iter=5,
lambda.diff.threshold=1e-6, trace=FALSE)
Arguments
cov.X |
Covariance matrix. |
v1 |
Principal eigenvector of |
lambda1 |
Largest eigenvalue of |
max.iter |
Maximum number of iterations for power iteration method when computing sub-matrix eigenvalues.
See description |
lambda.diff.threshold |
Threshold for exiting the power iteration calculation.
See description |
trace |
True if debugging messages should be displayed during execution. |
Value
Vector of approximate normed squared eigenvector loadings.
See Also
Examples
set.seed(1)
# Simulate 10x5 MVN data matrix
X=matrix(rnorm(50), nrow=10)
# Estimate covariance matrix
cov.X = cov(X)
# Compute eigenvectors/values
eigen.out = eigen(cov.X)
v1 = eigen.out$vectors[,1]
lambda1 = eigen.out$values[1]
# Print true squared loadings
v1^2
# Compute approximate normed squared eigenvector loadings
computeApproxNormSquaredEigenvector(cov.X=cov.X, v1=v1,
lambda1=lambda1)
[Package EESPCA version 0.7.0 Index]