EEML {EEML} | R Documentation |
Ensemble Explainable Machine Learning Models
Description
Ensemble Explainable Machine Learning Models
Usage
EEML(df, Weight)
Arguments
df |
List of dataframes containing various explainable scores for each model |
Weight |
Ensemble weights of the models (from weight function) |
Value
ImpScore: Final variable important score of EEML model
References
Paul, R.K., Das, T. and Yeasin, M., 2023. Ensemble of time series and machine learning model for forecasting volatility in agricultural prices. National Academy Science Letters, 46(3), pp.185-188.
Yeasin, M. and Paul, R.K., 2024. OptiSembleForecasting: optimization-based ensemble forecasting using MCS algorithm and PCA-based error index. The Journal of Supercomputing, 80(2), pp.1568-1597.
Examples
library("EEML")
df1<- as.data.frame(matrix(rnorm(50) , nrow = 10) )
df2<- as.data.frame(matrix(rnorm(50) , nrow = 10) )
df3<- as.data.frame(matrix(rnorm(50) , nrow = 10) )
rownames(df1)<- rownames(df2)<-rownames(df3)<-paste0("Var", seq(1,10,1))
colnames(df1)<- colnames(df2)<-colnames(df3)<-paste0("Exp", seq(1,5,1))
DF<- list(df1, df2, df3)
EEML<-EEML(df=DF,Weight=NULL)
[Package EEML version 0.1.0 Index]