EDISON.run {EDISON} | R Documentation |
Wrapper function for starting an MCMC simulation
Description
This function provides a wrapper for starting an MCMC simulation, using only the data and some basic options as input.
Usage
EDISON.run(input, output.file = "EDISON.output",
information.sharing = "poisson", num.iter = 10000, prior.params = NULL,
options = NULL, fixed.edges = NULL)
Arguments
input |
Input data. Either a filename pointing to an R data file
containing the results of |
output.file |
Where to save the output of the MCMC simulation. |
information.sharing |
Which information sharing prior to use:
|
num.iter |
Number of iterations of the MCMC simulation. |
prior.params |
Initial values of the hyperparameters of the information sharing priors. |
options |
Settings for the MCMC simulation, as generated by
|
fixed.edges |
Matrix of size NumNodes by NumNodes, with
|
Value
Returns the results of the MCMC simulation, similar to
runDBN
.
Author(s)
Sophie Lebre Frank Dondelinger
References
For details on the model and MCMC simulation, see:
Dondelinger et al. (2012), "Non-homogeneous dynamic Bayesian networks with Bayesian regularization for inferring gene regulatory networks with gradually time-varying structure", Machine Learning.
See Also
Examples
# Generate random gene network and simulate data from it
dataset = simulateNetwork(l=25)
# Run MCMC simulation to infer networks and changepoint locations
# Uses default settings: Poisson prior and 1500 iterations
result.poisson = EDISON.run(dataset$sim_data, num.iter=500)
# Use the binomial information sharing prior with hard node coupling, and
# run for 5000 iterations
# NOT EXECUTED
#result.bino = EDISON.run(dataset$sim_data,
# information.sharing='bino_hard', num.iter=5000)
# Set options to allow saving network and changepoint samples to file
options = defaultOptions()
options$save.file = TRUE
# NOT EXECUTED
# result.bino2 = EDISON.run(dataset$sim_data,
# information.sharing='bino_hard',
# num.iter=5000, output.file='bino2.results',
# options=options)