| ECOS_csolve {ECOSolveR} | R Documentation | 
Solve a conic optimization problem
Description
The function ECOS_csolve is a wrapper around the ecos
csolve C function. Conic constraints are specified using the
G and h parameters and can be NULL and zero
length vector respectively indicating an absence of conic
constraints.  Similarly, equality constraints are specified via
A and b parameters with NULL and empty vector
values representing a lack of such constraints. At most one of the
pair (G , h) or (A, b) is allowed to be absent.
Usage
ECOS_csolve(
  c = numeric(0),
  G = NULL,
  h = numeric(0),
  dims = list(l = integer(0), q = NULL, e = integer(0)),
  A = NULL,
  b = numeric(0),
  bool_vars = integer(0),
  int_vars = integer(0),
  control = ecos.control()
)
Arguments
| c | the coefficients of the objective function; the length of
this determines the number of variables  | 
| G | the inequality constraint matrix in one of three forms: a
plain matrix, simple triplet matrix, or compressed column
format, e.g. dgCMatrix-class. Can also be
 | 
| h | the right hand size of the inequality constraint. Can be empty numeric vector. | 
| dims | is a list of three named elements:  | 
| A | the optional equality constraint matrix in one of three
forms: a plain matrix, simple triplet matrix, or compressed
column format, e.g. dgCMatrix-class. Can be
 | 
| b | the right hand side of the equality constraint, must be
specified if  | 
| bool_vars | the indices of the variables, 1 through  | 
| int_vars | the indices of the variables, 1 through  | 
| control | is a named list that controls various optimization parameters; see ecos.control. | 
Value
a list of 8 named items
- x
- primal variables 
- y
- dual variables for equality constraints 
- s
- slacks for - Gx + s <= h,- s \in K
- z
- dual variables for inequality constraints - s \in K
- infostring
- gives information about the status of solution 
- retcodes
- a named integer vector containing four elements - exitflag
- 0= - ECOS_OPTIMAL, 1=- ECOS_PINF, 2=- ECOS_DINF, 10=- ECOS_INACC_OFFSET, -1=- ECOS_MAXIT, -2=- ECOS_NUMERICS, -3=- ECOS_OUTCONE, -4=- ECOS_SIGINT, -7=- ECOS_FATAL. See ECOS_exitcodes
 - . - iter
- the number of iterations used 
- mi_iter
- the number of iterations for mixed integer problems 
- numerr
- a non-zero number if a numeric error occurred 
 
- summary
- a named numeric vector containing - pcost
- value of primal objective 
- dcost
- value of dual objective 
- pres
- primal residual on inequalities and equalities 
- dres
- dual residual 
- pinf
- primal infeasibility measure 
- dinf
- dual infeasibility measure 
- pinfres
- primal infeasibility residual 
- dinfres
- dual infeasibility residual 
- gap
- duality gap 
- relgap
- relative duality gap 
- r0
- Unknown at the moment to this R package maintainer. 
 
- timing
- a named numeric vector of timing information consisting of - runtime
- the total runtime in ecos 
- tsetup
- the time for setup of the problem 
- tsolve
- the time to solve the problem 
 
Details
A call to this function will solve the problem:
minimize c^Tx, subject to Ax = b, and h - G*x \in K.
Variables can be constrained to be boolean (1 or 0) or integers. This is indicated
by specifying parameters bool_vars and/or int_vars respectively. If so
indicated, the solutions will be found using a branch and bound algorithm.
Examples
## githubIssue98
cat("Basic matrix interface\n")
Gmat <- matrix(c(0.416757847405471, 2.13619609566845, 1.79343558519486, 0, 0,
                 0, 0, -1, 0, 0, 0, 0.056266827226329, -1.64027080840499, 0.841747365656204,
                 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0.416757847405471, 2.13619609566845,
                 1.79343558519486, 0, 0, 0, -1, 0, 0, 0, 0, 0.056266827226329, -1.64027080840499,
                 0.841747365656204, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0), ncol = 5L)
c <- as.numeric(c(0, 0, 0, 0, 1))
h <- as.numeric(c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0))
dims <- list(l = 6L, q = 5L, e = 0L)
ECOS_csolve(c = c, G = Gmat, h = h,
           dims = dims,
           A = NULL, b = numeric(0))
cat("Simple Triplet Matrix interface, if you have package slam\n")
if (requireNamespace("slam")) {
  ECOS_csolve(c = c, G = slam::as.simple_triplet_matrix(Gmat), h = h,
              dims = dims,
              A = NULL, b = numeric(0))
}
if (requireNamespace("Matrix")) {
   ECOS_csolve(c = c, G = Matrix::Matrix(Gmat), h = h,
               dims = dims,
               A = NULL, b = numeric(0))
}
## Larger problems using saved data can be found in the test suite.
## Here is one
if (requireNamespace("Matrix")) {
  MPC01 <- readRDS(system.file("testdata", "MPC01_1.RDS", package = "ECOSolveR"))
  G <- Matrix::sparseMatrix(x = MPC01$Gpr, i = MPC01$Gir, p = MPC01$Gjc,
                            dims = c(MPC01$m, MPC01$n), index1 = FALSE)
  h <- MPC01$h
  dims <- lapply(list(l = MPC01$l, q=MPC01$q, e=MPC01$e), as.integer)
  retval <- ECOS_csolve(c = MPC01$c, G=G, h = h, dims = dims, A = NULL, b = NULL,
                        control = ecos.control(verbose=1L))
  retval$retcodes
  retval$infostring
  retval$summary
}